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Effects of Dephasing and Dissipation on Nonequilibrium Quantum Noise
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Nonequilibrium current fluctuations in a conductor in the presence of transport are studied. When
the conductor length L is of mesoscopic size, this nonequilibrium noise is of quantum nature; it
increases with the current and does not vanish even at zero temperature. As L is increased beyond the
dephasing length, the quantum coherence is destroyed, but the noise is not suppressed; it increases
toward the shot noise level. This is in sharp contrast with other quantum phenomena such as
universal conductance fluctuations, which are suppressed by dephasing. As L is further increased
to the length of the maximum energy-relaxation, the noise starts to decrease, approaching zero
in the macroscopic limit. Maximum energy dissipation is therefore essential for the noise to be of
macroscopic type. A scaling theory connecting mesoscopic and macroscopic regimes is also presented.
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I. INTRODUCTION

Electrical current J in a conductor fluctuates about the
mean value (J)} as a function of time. At thermal equi-
librium, the fluctuations (henceforth called “noise”) (§J2)
are related to the linear conductivity by the fluctuation-
dissipation theorem. In the presence of transport, {J) # 0,
however, a nonequilibrium noise (NEN) appears [1-3],
which in general has no simple relationship to the trans-
port coeficients. At low temperatures, the equilibrium
noise becomes negligible, whereas the NEN increases with
current [1,2]. Throughout this work, we assume zero tem-
perature, so that the total noise is equal to the NEN. This
NEN has significant effects on many physical systems. For
example, when a conductor is connected in series to a
light-emitting (or laser) diode of high efficiency, a sub-
Poissonian (non-classical) photon state can be generated
if the NEN of the conductor is smaller than the shot noise
[4]. The NEN also determines the fundamental perfor-
mance limits of quantum interference devices [2].

Despite being so important, the formula for the NEN
has only been obtained for two limiting cases: for meso-
scopic conductors with perfect quantum coherence [1,
2] and for macroscopic conductors [5]. That is, for a
one-dimensional mesoscopic conductor connected to ideal

reservoirs at zero temperature [1],
W =1-~T {or mesoscopic conductors,

(1)

where T is the transmittance determined by potential
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scatterers in the conductor [6], and W is the “noise figure”
[7] defined by

W = (6J2)/{6J?)shot- (2)

Here, (§J%)ghot is the usual shot noise, which is propor-
tional to (J). Clearly, for a given chemical potential differ-
ence Ap, (§J2) decreases with decreasing (J). The noise
figure has been introduced to cancel out this trivial de-
pendence on the samples’ conductivities [7], and it corre-
sponds to the Fano factor, which is the standard measure
of quantum noise of photons [8]. Equation (1) neglects
the 1/f noise because for samples of good quality it is
negligible except at very low frequencies [9].

If the length L of the conductor is increased, T even-
tually goes to zero and W approaches unity, i.e., Eq. (1)
predicts that the NEN approaches the full shot noise:

W-—-1 as L — oo.

(3)
It is well known [5], however, that

W ~ 0 for macroscopic conductors.

(4)

In this work, we resolve this apparent contradiction by
analyzing the effects of non-ideal reservoirs, dephasing,
and dissipation on NEN, and we clarify the mechanism
that distinguishes macroscopic conductors from meso-
scopic conductors [7].

Note that the NEN of Eq. (1) is purely of quantum na-
ture, and it is therefore tempting to say that the NEN
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should be suppressed when quantum coherence is de-
stroyed by a dephasing mechanism. However, this is false,
as we will show later. The point is that not orly a quan-
tum system, but also a classical (incoherent) system can
exhibit noise. This is in sharp contrast with other quan-
tum phenomena such as universal conductance fluctua-
tions [10], which are suppressed when quantum coherence
is destroyed.

II. NON-IDEAL RESERVOIRS

We consider a one-dimensional conductor of length L,
both ends of which are connected to large electron reser-
voirs 1 and 2, whose chemical potentials are p; and
p2 (< p1), respectively. Current J is induced by the
chemical potential difference between these two reservoirs:
Ap = wy — po. Equation (1) assumes that the reservoirs
are ideal. In real samples with nonzero Ap, however, the
reservoirs (particularly their boundaries on the conduc-
tor) could be excited by a finite current. If the energies of
excited electrons are smaller than Ay, we find — assuming
perfect coherence in the conductor ~ that [11]

W =n(Ap)T +(1-T), ()

where 0 < 7(Ap) < 1 measures the degree of the excita-
tion, the detailed form of which is irrelevant to the present
discussion. The incompleteness of the reservoirs causes an
additional noise, T, which is the scaled emission noise
[2,12]. This formula explains why the W observed for a
quantum point contact [9] does not vanish when T = 1,
where Eq. (1) predicts W = 0. However, it predicts, as
Eq. (1) does, the asymptotic behavior of Eq. (3). Hence,
the imperfectness of reservoirs does not lead to Eq. (4).

III. A GENERAL MICROSCOPIC MODEL

Next, we consider dephasing and dissipation in the con-
ductor, assuming that the reservoirs are ideal. Equation
(1) was derived by neglecting any interactions of electrons
with other electrons, or with phonons, photons, or mag-
netic impurities, etc. When these interactions are taken
into account, the lifetime njs of a one-body electron state
becomes finite. For mesoscopic conductors, however, a
more important time scale is the phase relaxation time
T4, Which is usually longer than mjfe [10]. We will show
later that there is another important time scale ry, which
is the time spent by an electron of energy Ap above the
Fermi energy before it relaxes onto the Fermi surface [see
Egs. (9), (13) and (14)]. Note that 7y is generally longer
than a simple inelastic lifetime: Two or more inelastic-
scattering events occur before an electron loses all excess
energy of Au. That is, 7y is the time for the maximum
energy dissipation.

To demonstrate that the dephasing process plays a role
completely different from this energy-relaxation process,
we employ a model in which 74 can be shortened while
keeping Tyx long. That is, we consider conductors with
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magnetic impurities and electron-phonon interactions {7].
We denote by V., the sum of interactions between elec-
trons and the magnetic impurities, each of which is as-
sumed to be weak and ferromagnetic so that the pure-
dephasing condition is ideal [13]. As the concentration
of the magnetic impurities is increased, the spin of an
electron will be flipped by the impurities. This disturbs
the electron interference, so 74 is shortened while the en-
ergy of the electron is preserved. On the other hand, the
electron-phonon interaction Vep induces phonon-emission
processes and thereby determines .

Following the standard technique [6], we suppose that
perfect leads 1 and 2 are connected to the conductor of
length L. After lengthy calculations [7], we find a general
formula for W, which at zero temperature takes the very
simple form:

W ~ 25[1 ‘fa(f)lfq(f)’
Lelfale) = fale)]

(6)

‘where fo(¢) and fy(€) are the distribution functions of

in-coming and out-going electrons, respectively, in lead

‘a (= 1,2). Let us confirm that in the coherent regime

(L << Ly, Lyiy) this formula reproduces the previous re-
sults. Since the reservoirs are assumed to be ideal, f,(¢)
obeys the perfect Fermi-Dirac (FD) distribution. On the
other hand, when Ve, = Ve = 0, f1(€) is given by [7]

. - 0 (/“1 < 6)’
hE=HRE=1-T (p2<e< ), (7
1 (e < pa).

If we neglect a weak ¢ dependence of T for py < € < pq,
then Egs. (6), (7) indeed reproduce Eq. (1).

A. EFFECT OF DEPHASING

Most quantum phenomena that are characteristic of
mesoscopic conductors disappear when the transit time
Tir of an electron through the conductor exceeds 74 [6,
10]. It is therefore worthwhile to examine whether W is
suppressed when 74 < 7y; << Tyx. This is equivalent, in
length scale, to Ly < L << Lsyx. Our model yields the
last inequality (L << L) when Ve,, = 0. In this case,
we find that f; takes the same functional form as Eq. (7),
but we should replace T with a generalized transmittance.
That is, since the electron spin is not conserved, T can
no longer be defined as the square of the usual one-body
scattering amplitude. Instead, we define T simply as the
probability that an electron passes through the conductor,
disregarding whether or not its spin is conserved. With
this T, f; is given by Eq. (7), and therefore

Woe~1-T (for any L << Lyx).

(8)

That is, although Eq. (1) was obtained for L << Lg, Ly
the same form approximately holds even when L > Ly if
the generalized transmittance is used for T'. (The value of

this T is of course different from that for V,,, = 0.) As
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L is increased, this T eventually goes to zero. Hence, we
see that the dephasing without energy relaxation does not
lead to Eq. (4). This is in sharp contrast to other quantum
phenomena in mesoscopic systems, such as the universal
conductance fluctuations, most of which are suppressed
by the dephasing [6, 10].

B. EFFECT OF DISSIPATION

We now consider the energy dissipations of electrons
by taking Vep # 0 and V.m = 0. Let us first consider the
damped limit where Vep is very large. In this limiting case,
all out-going electrons are relaxed to states of minimum
allowable energy, so

: - 0 (fa <€)

P - ’

Ro=izo={) F53

Here, jio (o = 1,2) denotes the Fermi energy of out-going

electrons in lead a. This quantity can be defined only in

the damped limit. Substituting this form into Eq. (6), we
get

(9)

W =0 (10)

which agrees with Eq. (4). Equations (5), (8), and (10)
answer our question: The maximum energy transfer from
the electron system to the phonon system (or photon sys-
tem [14]) is essential for noise suppression.

To see this in more detail, let us interpolate between Eq.
(8) and Eq. (10). As L is increased from L << Ly toward
L >> Ly, fa gradually changes from fg to f§° Hence,
we can conclude that W changes continuously from Eq.
(8) to Eq. (10). To see the explicit functional form of W,
we have developed a simple microscopic theory [14] and a
scaling theory [11]. We present below the essence of these
theories.

when L/Lyy — 00,

IV. A SIMPLE MICROSCOPIC MODEL

To calculate the explicit functional form of W, we must
specify the forms of V.., and V,,. For simplicity, we take
Vem = 0, and

Vep = Z hgkqa{&k (éq + é;),
kg

(11)

where ¢, is the annihilation operator of phonons, and gx,
is the coupling constant of the electron-phonon interaction
[14]. Although very simple, this model seems to describe
the point. By a unitary transformation, the Hamiltonian
can be further simplified, and we finally obtain the formula
[14],

W~ (1-x)(1-T), (12)

_ 1
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where P(E) denotes the phonon excitation spectra of the
coupled electron-phonon system, and « represents the av-
erage energy transfer, per transit of one electron, from the
electron system to the phonon system. Thatis, 0 < x < 1,
and & increases with increasing VCP or L, in agreement
with the conclusion of the previous section.

To relate k with 7, we may employ, as a first approxi-
mation, the Markovian approximation. That is,

(14)

To see the L dependence, we note that the mean-free path
¢ for momentum relaxation processes of an electron is usu-
ally smaller than L. When L ~ Ly, >> £, an electron
undergoes diffusive motions, going back and forth in the
conductor until it escapes into a lead. In this case, 7,
is proportional to L? for a given Vep, and we can rewrite
Eq. (14) as & =~ 1 — exp[~(L/Lux)?]. We thus obtain the
approximate L dependence,

k=~ 1 — exp[—Tir [ Trx]-

W e @/La)’ (1 = T) (£ << L ~ Luy). (15)

This formula explicitly shows the importance of the en-
ergy relaxation processes. We have also evaluated the fre-
quency dependence of the NEN, which will be described
elsewhere [14].

V. SCALING THEORY

The above model illustrates the dependence of the NEN
on dissipation for any L. However, since it starts from a
specific form of Ve,,, the resultant equation (12) should
be considered to describe a qualitative dependence of the
NEN on dissipation. Equation (15) is more approximate,
and will not hold in such regimes that deviations from
Eq. (4) or Eq. (8) are small. The scaling theory presented
below plays a complementary role: It holds for any sam-
ple, but, at present, only small deviations from Eq. (4) or
Eq. (8) can be treated.

We note that W is expected to become less sensitive to
the details of the sample for L > Ly than for L < Lyg. In
fact, let

gz oW L
=Phz I,

(16)

where L¢; (~ L) is the crossover length between meso-
scopic and macroscopic behaviors. We have found that
this B has universalforms in both mesoscopic and macro-
scopic regimes [11]:

5= 1-W2>0 (z4 <z<<1),
Tl1-1 <0 (1<<a).

(17)

We can immediately obtain the universal L dependence
of W by integrating this equation. However, we take one
more step to derive formulas of much more interest. The
above simple forms strongly suggest that 8 is a univer-
sal function of a small number of parameters. Hence, we
assume that 8 is a smooth function of two parameters:
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B = B(W,z) for £ > x4. Then, it may be expanded as
follows:

B=1-W —o(W)z+0(z?) (24 <2z<<1), (18)
B=-14+(W)™' +0(z7?) (1<<z), (19)

where a(W) and (W) are positive functions of W. By
integrating the first equation, we find for Ly < Ly <
L << L that :
W) VV(mO)%?eXP[*'ﬁ; %Q%de]
T)= , .
L+ (Zexp [- 2 $%da] - 1) W(ao)

(20)

For practical purposes, the integrand may be approxi-
mated by its mean value M (> 0), and the exponential
function is then reduced to exp[—~M(z — xo)]. It is then
predicted that as L is increased from some Ly ~ Ly the
noise figure W first increases [due to the decrease in T
in Eq. (8)], takes a maximum value at L ~ Ly, /M, and
then decreases. This interesting prediction may be exper-
imentally confirmed by measuring the NEN in quantum
wires. On the other hand, for L.; << L < Ly we find
Zo
W(z) = W(xo)x—oexp [—/ l(—v:—)dx] . (21)
z - T

For practical purposes, (W) may be approximated by
a positive constant 4(0), and then the integral becomes
trivial. Equation (21) predicts an interesting deviation
from the rather trivial behavior of W o L™! [3,7] as
L is decreased. This prediction may be experimentally
confirmed by measuring the NEN of short conductors.

VI. NONEQUILIBRIUM NOISE OF JUNCTIONS

The above discussions have assumed a conductor of fi-
nite length L, and we have shown that W vanishes when
L exceeds Lyx. On the other hand, it is known that junc-
tions, such as tunnel junctions, Schottky barriers and pn
junctions, exhibit shot noise (W =~ 1). Schottky barriers
and pn junctions are often treated as “macroscopic”, but
they still exhibit shot noise. Is this consistent with our
conclusion on macroscopic conductors? Let us answer
this question.

In the coherent regime (L << Lg, Lyy), there seems to
be no essential difference between conductors and junc-
tions. Hence, Eq. (1) holds for both. (However, most lit-
erature on tunnel junctions assumed that T << 1, which
leads to W = 1.) In the macroscopic regime, however,
an important difference arises. For a macroscopic con-
ductor with L >> Ly, the shifted FD distribution of
Eq. (9) is realized not only in the leads but also in the
conductor. Upon the Galilean transformation to a mov-
ing frame in which (J) = 0, the shifted FD distribution
reduces to the equilibrium FD distribution. That is, at
zero temperature, the electron system is transformed into
its ground state, the Fermi sea. Since the Fermi sea ex-
hibits no noise, the NEN is zero. For a junction, on the
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other hand, the bias voltage is high and the length of
the junction region is relatively short, so L >> Ly, is
not satisfied. (Recall that Ly is longer than a simple
inelastic length.) Hence, the distribution of electrons in
the junction region is very different from the shifted FD
distribution, and the shot noise remains.

VII. CONCLUDING REMARKS

In the above analysis, we did not consider electron-
electron (e-e) interactions. Equation (6) indicates that e-
e interactions do not lead to W 2 0, because they cannot
lead to the zero-noise distribution ff‘" since the energy of
the totalelectron system is conserved. That is, the energy
transfer from the total electron system to other systems
(such as phonons and photons) seems to be essential for
the noise suppression. However, we do not know whether
Eq. (8) is valid in the presence of e-e interactions, and
future study will therefore be needed.

Note also that we have assumed one-dimensional con-
ductors. (An exception is Eq. (21), which may be valid
for any thin conductor.) Therefore, our formulas should
be experimentally confirmed by measuring the noise of
currents in single-mode quantum wires. For higher-
dimensional or multi-mode quasi-one-dimensional con-
ductors, our formulas may be modified. This is also a
subject for future study.
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