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1. Introduction

The first-order phase transition plays an important role in
diverse fields of physics. Its most characteristic feature is
that a phase boundary is a coexisting region, where two or
more phases coexist. The dimension D of a coexisting region
in the phase diagram depends on the number r of coexisting
phases.1–5) It also depends on which variables are taken as
the axes of the phase diagram.1–3)

For example, for a single-component system whose
natural variables of the entropy1–4) are U (energy), V

(volume), and N (amount of substance), the phase diagram
may be drawn either in the T–P plane, or in the T–v plane,
or in the u–v plane, where T , P, v, and u are the tempera-
ture, pressure, molar volume (� V=N), and molar energy
(� U=N), respectively. Here, v and/or u are used instead of
V and/or U in order to make the diagrams independent of N.
These phase diagrams are schematically shown in Figs. 1–3,
respectively.3) We denote D for these diagrams by DðT ;PÞ,
DðT ; vÞ, and Dðu; vÞ, respectively. For example, DðT ;PÞ ¼ 1,
DðT ; vÞ ¼ Dðu; vÞ ¼ 2 for a liquid–gas coexisting region,
where two phases coexist (i.e., r ¼ 2), whereas DðT ;PÞ ¼ 0,
DðT ; vÞ ¼ 1, Dðu; vÞ ¼ 2 at the triple point, where r ¼ 3.1–3)

Since T and P can take constant values across a coexisting
region,1–3) D of the coexisting region tends to shrink if T

and/or P is taken as an axis(es) of the phase diagram, and
thus DðT ;PÞ � DðT ; vÞ � Dðu; vÞ.

For such a single-component system, DðT ;PÞ coincides
with the ‘‘thermodynamical degrees of freedom’’ f , which is
given by the Gibbs phase rule1–5) [see eq. (7)]. On the other
hand, Dðu; vÞ � DðT ; vÞ � f in general.1,3) For example,
f ¼ 1 ¼ DðT ;PÞ < DðT ; vÞ ¼ Dðu; vÞ ¼ 2 for a liquid–gas
coexisting region, whereas f ¼ 0 ¼ DðT ;PÞ < DðT ; vÞ <
Dðu; vÞ ¼ 2 at the triple point.

The situation becomes more complicated for a multi-
component system, which consists of q (� 2) different
substances. We assume that the natural variables of entropy
are U;V ;N1; . . . ;Nq, where Nj (j ¼ 1; . . . ; q) is the amount of
substance j. That is, the entropy S is a function of these
additive (extensive) variables;

S ¼ SðU;V ;N1; . . . ;NqÞ; ð1Þ

which is called the fundamental relation.1,3,4) Let Ntot be the
total amount of substances,

Ntot � N1 þ � � � þ Nq: ð2Þ

To make phase diagrams independent of Ntot, we use the
normalized variables;

u �
U

Ntot

; ð3Þ

v �
V

Ntot

; ð4Þ

nj �
Nj

Ntot

ð j ¼ 1; . . . ; qÞ: ð5Þ

Among n1; . . . ; nq, only ðq� 1Þ variables are independent
because of the identity

Xq
j¼1

nj ¼ 1: ð6Þ

Hence, the phase diagram may be drawn in the ðqþ 1Þ-
dimensional space that is spanned by the axes corre-
sponding to either ðT ;P; n1; . . . ; nq�1Þ, ðT ; v; n1; . . . ; nq�1Þ,
or ðu; v; n1; . . . ; nq�1Þ, which correspond to the so-called
TPN, TVN, and UVN representations, respectively. We
denote the dimensions of a coexisting region in these
spaces by DðT ;P; n1; . . . ; nq�1Þ, DðT ; v; n1; . . . ; nq�1Þ, and
Dðu; v; n1; . . . ; nq�1Þ, respectively.

On the other hand, the thermodynamical degrees of
freedom1–5) f is defined as the number of variables that can
be varied independently in the coexisting region, among the
intensive variables T ;P; �1; . . . ; �q, where �j denotes the
chemical potential of substance j. The Gibbs phase rule
gives1–5)

f ¼ qþ 2� r: ð7Þ

For q � 2 neither of D’s coincides with f in general, and the
explicit formulas for D’s were unknown.

Knowledge about D’s would be very helpful in draw-
ing phase diagrams of new materials.1–5) Since phase
diagrams are most fundamental to studies of macro-
scopic systems, general formulas would be valuable
which give DðT ;P; n1; . . . ; nq�1Þ, DðT ; v; n1; . . . ; nq�1Þ, and
Dðu; v; n1; . . . ; nq�1Þ as functions of q and r. The purpose
of the present paper is to derive such general formulas. We
also evaluate D’s in some other spaces. The results will be
summarized as the chain of equalities and inequalities,
eq. (41).

2. UVN Representation

2.1 Basic relations
We consider a q-component system, the natural variables

of whose entropy1–4) are assumed to be U;V ;N1; . . . ;Nq.
For each coexisting region, we label the coexisting phases�E-mail: shmz@ASone.c.u-tokyo.ac.jp
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by � ¼ 1; . . . ; r. For example, the shaded region of Fig. 3
is a coexisting region, in which the gas (� ¼ 1), liquid
(� ¼ 2), and solid (� ¼ 3) phases coexist, hence is called
the triple point. Note that there is the trivial r!-fold
degeneracy in labeling � ¼ 1; . . . ; r. Since this degeneracy
does not affect the values of D’s, we henceforth forget
about it.

The values of U, V , and Nj in phase � are denoted by U�,
V�, and N�j , respectively. They are related to those of the
total system as

U ¼
Xr
�¼1

U�; ð8Þ

V ¼
Xr
�¼1

V�; ð9Þ

Nj ¼
Xr
�¼1

N�j ð j ¼ 1; . . . ; qÞ: ð10Þ

Corresponding to u, v, nj of the total system, we define

u� �
U�

N�tot

; ð11Þ

v� �
V�

N�tot

; ð12Þ

n�j �
N�j

N�tot

ð j ¼ 1; . . . ; qÞ ð13Þ

for each phase, where N�tot is the total amount of substances
in phase �,

N�tot � N�1 þ � � � þ N�q ð� ¼ 1; . . . ; rÞ: ð14Þ

Corresponding to eq. (6), we have

Xq
j¼1

n�j ¼ 1 for all �: ð15Þ

We also define the molar fraction of each phase

�� �
N�tot

Ntot

ð� ¼ 1; . . . ; rÞ ð16Þ

which satisfies the trivial identity

Xr
�¼1

�� ¼ 1: ð17Þ

By dividing eqs. (8)–(10) by Ntot, we obtain

u ¼
Xr
�¼1

��u�; ð18Þ

v ¼
Xr
�¼1

��v�; ð19Þ

nj ¼
Xr
�¼1

��n�j ð j ¼ 1; . . . ; qÞ: ð20Þ

Note that each phase is, by definition,3,5,6) homogeneous
spatially. Hence, the local value of the molar energy is equal
to u� at everywhere in phase �. On the other hand, the total
system is inhomogeneous in a coexisting region, and the
local value of the molar energy is equal not to u but to
either of u1; u2; . . ., or ur. As seen from eq. (18), u actually
represents the average molar energy, which is the weighted
average of u�’s of the coexisting phases. The same can also
be said about v and nj.

Fig. 3. A schematic phase diagram of a single-component system, plotted

in the space spanned by the axes corresponding to u ð� U=NÞ and v

ð� V=NÞ. All the coexisting regions are planes. For example, the triple

point, which was a point in Fig. 1, extends to the shaded area in this

figure. Unlike Figs. 1 and 2, every point in this diagram corresponds to a

single equilibrium state, and different points correspond to different

equilibrium states.

Fig. 2. A schematic phase diagram of a single-component system, plotted

in the space spanned by the axes corresponding to T and v ð� V=NÞ.
Unlike Fig. 1, the solid–liquid–gas coexisting region (triple point) is a

vertical line, whereas the liquid–gas, solid–liquid, and solid–gas coex-

isting regions are planes.

Fig. 1. A schematic phase diagram of a single-component system, plotted

in the space spanned by the axes corresponding to T and P. The solid–

liquid–gas coexisting region is a point, which is called the triple point. On

the other hand, the liquid–gas, solid–liquid, and solid–gas coexisting

regions are lines, which are called coexisting lines.
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Intensive variables in phase � are continuous functions of
u�; v�; n�1 ; . . . ; n

�
q�1,1,3) and have the same values as those of

the total system;1–4)

T ¼ Tðu�; v�; n�1 ; . . . ; n
�
q�1Þ ¼ Tðu; v; n1; . . . ; nq�1Þ; ð21Þ

P ¼ Pðu�; v�; n�1 ; . . . ; n
�
q�1Þ ¼ Pðu; v; n1; . . . ; nq�1Þ; ð22Þ

�j ¼ �jðu�; v�; n�1 ; . . . ; n
�
q�1Þ ¼ �jðu; v; n1; . . . ; nq�1Þ

ð j ¼ 1; . . . ; qÞ: ð23Þ
Here, the functions Tð�; �; . . . ; �Þ, Pð�; �; . . . ; �Þ, and
�jð�; �; . . . ; �Þ are obtained by differentiating the fundamental
relation, eq. (1).1,3,4)

2.2 D in the fu�; v�; n�1 ; . . . ; n�q�1; ��g�¼1;...;r space
Our principal purpose is to evaluate D’s in the ðqþ 1Þ-

dimensional spaces such as the one spanned by the axes
corresponding to ðT ;P; n1; . . . ; nq�1Þ. As a preliminary, we
first evaluate the dimension Dðfu�; v�; n�1 ; . . . ; n�q�1; �

�g�Þ in a
larger space which is spanned by the axes corresponding to
rðqþ 2Þ variables fu�; v�; n�1 ; . . . ; n�q�1; �

�
totg�¼1;...;r.

7)

Since r different phases coexist, we have

Tðu1; v1; n1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ Tður; vr; nr1; . . . ; n

r
q�1Þ; ð24Þ

Pðu1; v1; n1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ Pður; vr; nr1; . . . ; n

r
q�1Þ; ð25Þ

�jðu1; v1; n1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ �jður; vr; nr1; . . . ; n

r
q�1Þ

ð j ¼ 1; . . . ; qÞ; ð26Þ
which impose ðr � 1Þ � ðqþ 2Þ conditions on r � ðqþ 1Þ
variables fu�; v�; n�1 ; . . . ; n�q�1g�¼1;...;r. Therefore, the dimen-
sion of the set of values of fu�; v�; n�1 ; . . . ; n�q�1g�¼1;...;r is
evaluated as

rðqþ 1Þ � ðr � 1Þðqþ 2Þ ¼ qþ 2� r: ð27Þ

Among the residual variables �1; . . . ; �r, we have eq. (17).
Hence,

Dðfu�; v�; n�1 ; . . . ; n
�
q�1; �

�g�Þ ¼ ðqþ 2� rÞ þ ðr � 1Þ

¼ qþ 1: ð28Þ

2.3 D in the u; v; n1; . . . ; nq�1 space
With the help of eq. (28), we can evaluate Dðu; v;

n1; . . . ; nq�1Þ as follows. It is obvious from eqs. (8)–(10)
that the values of U;V ;N1; . . . ;Nq are uniquely determined
by the values of fU�;V�;N�1 ; . . . ;N

�
q g�¼1;...;r. Furthermore,

the latter (including the number r) is uniquely determined by
the former, because otherwise two different states would
have the same value of the total entropy SðU;V ;N1; . . . ;NqÞ,
and thus the total system would be unstable.3) Therefore, the
values of fU�;V�;N�1 ; . . . ;N

�
q g�¼1;...;r (including r) have one-

to-one correspondence with the values of U;V ;N1; . . . ;Nq

of the total system. This means that fu�; v�; n�1 ; . . . ;
n�q�1;N

�
totg�¼1;...;r have one-to-one correspondence with

u; v; n1; . . . ; nq�1;Ntot. Hence, fu�; v�; n�1 ; . . . ; n�q�1; �
�g�¼1;...;r

have one-to-one correspondence with u; v; n1; . . . ; nq�1.
Therefore,

Dðu; v; n1; . . . ; nq�1Þ ¼ Dðfu�; v�; n�1 ; . . . ; n
�
q�1; �

�g�Þ

¼ qþ 1; ð29Þ
which is equal to the dimension of all possible states for
a given value of Ntot.

1,3,4) This is reasonable (obvious in
some sense) because each equilibrium state has one-to-

one correspondence with the set of values of U;V ;
N1; . . . ;Nq, even when the equilibrium state is in a coexisting
region.1,3)

For a single-component system, for example, formula (29)
gives Dðu; vÞ ¼ 2, which is consistent with Fig. 3.

3. TVN Representation

3.1 D in the T ; fv�; n�1 ; . . . ; n�q�1g�¼1;...;r space
To evaluate DðT ; v; n1; . . . ; nq�1Þ, we start with consider-

ing D in a larger space which is spanned by the axes
corresponding to ðT ; fv�; n�1 ; . . . ; n�q�1g�¼1;...;rÞ.7)

Since r different phases coexist, we have

P1ðT ; v1; n1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ PrðT ; vr; nr1; . . . ; n

r
q�1Þ; ð30Þ

�1
j ðT ; v

1; n1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ �

r
j ðT ; v

r; nr1; . . . ; n
r
q�1Þ

ð j ¼ 1; . . . ; qÞ; ð31Þ

which impose ðr � 1Þ � ðqþ 1Þ conditions on ð1þ r � qÞ
variables. Therefore,

DðT ; fv�; n�1 ; . . . ; n
�
q�1g�Þ ¼ 1þ rq� ðr � 1Þðqþ 1Þ

¼ qþ 2� r; ð32Þ
which coincides with f .

3.2 D in the T ; v; n1; . . . ; nq�1 space
With the help of eq. (32), we can evaluate DðT ; v;

n1; . . . ; nq�1Þ as follows. Equations (19) and (20) show that
for each set of values of ðT ; fv�; n�1 ; . . . ; n�q�1g�¼1;...;rÞ one
can vary q variables v; n1; . . . ; nq�1 by varying r variables
f��g�¼1;...;r subject to one condition, eq. (17). Therefore,

DðT ; v; n1; . . . ; nq�1Þ
¼ DðT ; fv�; n�1 ; . . . ; n

�
q�1g�Þ þminfq; r � 1g

¼ qþ 2� r þminfq; r � 1g ð33Þ

¼
qþ 1 ðr � qþ 1Þ,
q ðr ¼ qþ 2Þ,

�
ð34Þ

where in the last line we have taken account of an important
consequence of eq. (7);

r � qþ 2; ð35Þ

which gives the upper limit of the number of coexisting
phases.1–4)

For a single-component system (q ¼ 1), for example, the
above formula gives

DðT ; vÞ ¼
2 ðr � 2Þ,
1 ðr ¼ 3Þ,

�
ð36Þ

which is consistent with Fig. 2.

4. TPN Representation

4.1 D in the T ;P; fn�1 ; . . . ; n�q�1g�¼1;...;r space
To evaluate DðT ;P; n1; . . . ; nq�1Þ, we first consider D in a

larger space which is spanned by the axes corresponding to
ðT ;P; fn�1 ; . . . ; n�q�1g�¼1;...;rÞ.7)

Since r different phases coexist, we have

�1
j ðT ;P; n

1
1; . . . ; n

1
q�1Þ ¼ � � � ¼ �

r
j ðT ;P; n

r
1; . . . ; n

r
q�1Þ

ð j ¼ 1; . . . ; qÞ ð37Þ
which impose ðr � 1Þ � q conditions on ½2þ r � ðq� 1Þ	
variables. Therefore,
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DðT ;P; fn�1 ; . . . ; n
�
q�1g�Þ ¼ 2þ rðq� 1Þ � ðr � 1Þq

¼ qþ 2� r; ð38Þ
which coincides with f . This well-known result is also called
the phase rule.3,4)

4.2 D in the T ;P; n1; . . . ; nq�1 space
It is seen from eq. (20) that for each set of values of
ðT ;P; fn�1 ; . . . ; n�q�1g�¼1;...;rÞ, one can vary ðq� 1Þ variables
n1; . . . ; nq�1 by varying r variables f��g�¼1;...;r subject to one
condition, eq. (17). Therefore,

DðT ;P; n1; . . . ; nq�1Þ
¼ DðT ;P; fn�1 ; . . . ; n

�
q�1g�Þ þminfq� 1; r � 1g

¼ qþ 2� r þminfq� 1; r � 1g ð39Þ

¼
qþ 1 ðr � qÞ,
2qþ 1� r ðqþ 1 � r � qþ 2Þ,

�
ð40Þ

where in the last line we have taken account of eq. (35).
For a single-component system (q ¼ 1), for example, this

formula gives DðT ;PÞ ¼ 3� r, which coincides with f and
is consistent with Fig. 1.

5. Conclusions

Our principal results are eqs. (29), (34), and (40). We
have also derived additional results, eqs. (28) and (32). For
completeness, we have also described the known results,
eqs. (7) and (38). Here, eq. (7) can also be written as
DðT ;P; �1; . . . ; �qÞ ¼ qþ 2� r, because, by definition, f is
the dimension of a coexisting region in the space that is
spanned by the axes corresponding to ðT ;P; �1; . . . ; �qÞ.7)

By collecting all these results, we obtain the following
chain of equalities and inequalities;

0 � DðT ;P; �1; . . . ; �qÞ ¼ qþ 2� r ¼ f

¼ DðT ;P; fn�1 ; . . . ; n
�
q�1g�Þ ¼ DðT ; fv�; n�1 ; . . . ; n

�
q�1g�Þ

� DðT ;P; n1; . . . ; nq�1Þ ¼ qþ 1� r þminfq; rg
� DðT ; v; n1; . . . ; nq�1Þ ¼ qþ 2� r þminfq; r � 1g
� Dðu; v; n1; . . . ; nq�1Þ
¼ Dðfu�; v�; n�1 ; . . . ; n

�
q�1; �

�g�Þ ¼ qþ 1: ð41Þ

Here, qþ 1 is the dimension of all possible states for
a given value of Ntot.

1,3,4) It also agrees with the dimen-
sion of the space that is spanned by the axes correspond-
ing to either ðT ;P; n1; . . . ; nq�1Þ, or ðT ; v; n1; . . . ; nq�1Þ, or
ðu; v; n1; . . . ; nq�1Þ. This chain of equalities and inequalities
may be regarded as the fundamental phase rule, which shows
clearly how the dimension of a coexisting region varies
depending on the choice of the variables. It will be helpful in
studying first-order phase transitions and in drawing phase
diagrams of new materials.

Finally, we note the following points. Although we
have assumed that the natural variables of entropy1–4) are
U;V ;N1; . . . ;Nq, generalization to other cases (such as the
case where they include the total magnetization3,4)) is
straightforward. Furthermore, we have assumed, as in the
case of the Gibbs phase rule, that there is no accidental
degeneracy among equations which have been used in
calculating D’s. Hence, it is in principle possible (though
would be rare) that D’s take values that are different from
our formulas.
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