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From the microscopic quantum Langevin equati@kEs) we derive the effective semiconductor QLEs and
the associated noise correlations which are valid at a low-injection level and in real devices. Applying the
semiconductor QLEs to semiconductor light-emitting devi¢d=Ds), we obtain a formula for the Fano factor
of photons that gives the photon-number statistics as a function of the pump statistics and several parameters
of LEDs. Key ingredients are nonradiative processes, carrier-number dependence of the radiative and nonra-
diative lifetimes, and multimodeness of LEDs. The formula is applicable to the actual cases where the quantum
efficiency » differs from the differential quantum efficienoyy , whereas previous theories implicitly assumed
n=74. Itis also applicable to the cases where photons in each mode of the cavity are emitted and/or detected
inhomogeneously. Wheny<# at a running point, in particular, our formula predicts that even a Poissonian
pump can produce sub-Poissonian light. This mechanism for generation of sub-Poissonian light is completely
different from those of previous theories, which assumed sub-Poissonian statistics for the current injected into
the active layers of LEDs. Our results agree with recent experiments. We also discuss frequency dependence
of the photon statistic§S1050-294{@8)09504-3

PACS numbe(s): 42.50.Lc

I. INTRODUCTION might be responsible for the disagreement.
In this paper, to resolve the discrepancy between the pre-

There has been much research on quantum noise in lightdous theories and the experiments, we theoretically investi-
emitting devicegLEDSs) since the celebrated work of Shawl- gate the quantum noise in LE@$ a low-injection leve[22].
low and Towneg1]. We here consider the qguantum noise inTo this end, we extend the Langevin-equation method of
semiconductor LEDs. This subject was first studied by HaugChow, Koch, and Sargeff1] to treat the case where many
and Haker[2], who derived from a microscopic model use- photon modes are excited in an LED. From the microscopic
ful formulas for the first- and second-order optical coherence&uantum Langevin equation€QLES) and the associated
of LEDs. noise correlations, we derive the semiconductor QLEs and

Recently, much attention has been paid to sub-Poissoniahe noise correlations at the LIL. An important assumption is
light (SPL), which has lower intensity fluctuations than the that the photon-absorption and emission rates are much
standard quantum limif3], of various LEDs[4-14]. The smaller than the photon-escape rate from a “cavityir the
mechanism for generation of SPL in LEDs is quite differentexperimen{12], it has been reported that;/»>2 in low-
from that of squeezed light in nonlinear crystfl$]. The injection regions, whereag= 74 in high-injection regions.
latter mechanism is well understood as a Bogoliuvov transThe difference between and 4 is, in our theory, attributed
formation of a coherent state into a squeezed state of lightt nonradiative processes and the carrier-number dependence
[16]. The former mechanism, on the other hand, is ofterof lifetimes. They always exist in real LEDs, and become
described by the Langevin theory of lasg8s17—21. Previ-  particularly important in low-injection regions. In contrast,
ous studies on SPL in LEDs assumed that only a single mod#e can easily show that the previous simplified theofies
or a few modes of photons are excitpt|6,14. When the 7] always given= »nq. Hence our theory is a minimal one to
injection level is lowered, however, many modes of photonssimulate real LEDs. A formula for the photon Fano fad@f
become relevant, and we must consider all of them. Simplé derived. It gives the photon—nqmber statistics as a function
theories for such a case were reported in Rg#s7]. How- ~ Of the pump statistics, measuring frequenay, 74, and
ever, they ardoo simplified so that they cannot explain re- S0me factors arising fromultimodenessf LEDs. Simpli-
cent experiments by Hirano, KugelK), and co-workergo—  fied formulas are derived for homogeneous cases, in which
11], who demonstrated that the experimental results at a lowRhotons in each mode of the cavity are emitted and detected
injection level (LIL) disagree with the predictions of the Nomogeneously, and for inhomogeneous cases, in which they
simplified theories. The disagreement appears when th@re emitted and/or detected inhomogeneously. Using these
quantum efficiencyy differs from the differential quantum formulas, we discuss the con_d|t|on for generaﬂon of SPL in
efficiency 74 HK [9] suggested that nonradiative processes®n LED. Our results agree with the experimental results.

*Electronic address: fujisaki@ASone.c.u-tokyo.ac.jp 1The validity of this assumption with the meaning of the “cavity”
TElectronic address: shmz@ASone.c.u-tokyo.ac.jp will be explained in the Appendix.
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The paper is organized as follows. In Sec. Il, we derive d
the semiconductor QLEs and the noise correlations at the 2D =g {AuA) (DA —(ALD,), (5
LIL. In Sec. lll, the semiconductor QLEs are used to derive
a formula for the photon Fano factor. In Sec. IV, we examine‘Nhere ZD,uV is a diffusion Coeff|C|entA is a System vari-
the formula in various cases, and compare our theory withyple, andD, is a dissipation term in Langevin equations, i.e.,
recent experiment§9—12. In Sec. V, we summarize the A,=D +FM,(F#(t)F,,(t ))= 2D,,8(t—1"). The brackets

paper. mean the ensemble average for fluctuations.
We finally obtain the following microscopic QLESs, which
[l. DERIVATION OF QUANTUM LANGEVIN EQUATIONS describe LEDs in a microscopic scale, for the dipole operator
AND THE NOISE CORRELATIONS o=d_,ce”!, for the electric field operatorA,(t)
AT A LOW-INJECTION LEVEL =a,(t)e'", and for the electron occupation probabilitykn
A. Microscopic Langevin equations of an LED Spacene, = CyC,
Chow et al. [21] discussed the case wheresiagle mode d ) )
is excited among many-photon modes of a cavity. Since we Tl —(ytiog—iv)oy

are mainly interested in the photon statistics of LEDs at the
LIL, we extend their method to treatany modesf photons.

The total Hamiltoniari,, (which describes multimode pho- i IE 9 kA (Mekt =D +Fo,  (6)
tons in the cavity and carriers in the active layer of an LED
is written as 0 >
_A| +i(Q|_V|))A|_i grkak—’_Fh (7)
Hiot= Hmulti-ph+ Hearriert Hdlpole dt 3 ’
+ Hmany-body+ Hbaths+ Hbaths-sys (1) d Nek
anek: Pe(1—Ng) — —
nr
Humutti-ph= 2 fivala, i) _ .
+$ (ig} Al o+ H.c)+Fg, ®
h2k2 h2Kk?
Hearrier= 2 )ckck+ o d! d_k|, (3  where y is the dipole decay(dephasiny rate, 7 w,= €
K h +%2k2/2mg+ %.2k?/2m,, is the transition energy, arfd,, is
the fluctuation operator for the dipole. The hole occupation
Haipole= z ﬁ(g?kdikclaﬁH-C-), 4) probability ink space i(;snhkzdikd_k. The.photon escape
Tk ' rate from the cavity is¢;=»,/Q,, whereQ, is theQ factor

of the cavity,(), is the passive-cavity frequency, aRg is

whereH mii-ph IS the Hamiltonian of the multimode photons, the fluctuation operator for the electric field. The pump rate
a, is the annihilation operator for the photons in mddand  due to a current injection or optical pumping R (1
v, is the field oscillation frequency in mode The Hamil-  —n,), where the factor (%n) represents the pump
tonian of the electrons and holes in the active layer ishlocking[21]. Note that a lifetime of nonradiative decay,
Hearier- The annihilation operators of the electron and holehas been introduced in E(B). As discussed later, the exis-
of wave vectork arec, andd_,, respectivelym, andm,  tence of nonradiative processes is, in our model, a necessary
are the electron and hole effective masses, respectively, amndition for the difference between the quantum efficiency

|s the bare band-gap energy. The interaction among thand the differential quantum efficiency to occur. The other
carrlers and the photons is representedHay,q e in the di-  condition is that the lifetime of radiative processes or that of
pole approximation, W|trg, « being the bare coupling con- nonradiative ones varies with, . [See Eqs(66)—(68).] Non-
stants, and H.c. means Hermite conjugate. Note that here wadiative processes might be modeled by the capture of car-
consider only a direct radiative transition; however, in realriers at a trapping level in an LED; however, we only need
devices there are other processes, and we will include theihat 7, is an implicit function ofn.. These terms of pump
when necessary. The many-body interaction between the cadnd nonradiative decay have been phenomenologically intro-
riers is represented b¥many-noay the Hamiltonian of baths duced. The fluctuation operator for the electron number is
(or environmentsby Hyains and the interaction between the Fey -
baths and the systefthe carriers and photonby Haths-sys

To obtain QLEs, we start by making a mean-field ap- B. Adiabatic approximation
proximation forH many-voay @and consequentlyy andgy | are

. To derive more useful forms for later discussion, we use
renormalizedsee, e.g., Chap. 4 of RéR1]). The renormal-

the adiabatic approximatidi 9,23, and approximate the so-

ized parameters are denoted gyandg; . lution of Eq. (6) by
We then eliminatéHpimst Hpaths-sysOY Using the Markov
approximatior{3,16—21. As a result, the fluctuation and dis- i 21091 kA (Neg+ Nip— 1) +F
sipation terms appear in the equations of motion. The gener- ox= : : : 9

) . ; ) ; . y+Hlwg—ly,
alized Einstein relatiof16—18,20,2] gives the relation be-

tween the fluctuation and dissipation terms as follows: Substituting Eq(9) into Eq.(7), we find
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A= —[K02+1(Q— 1) A+ > Gy A +F +F, ., (FIOF(t))y=rPn(n) & 8(t—t"), (21
I/

(10 (FIOFL ()= kN(w)+ 118y, 8(t—t)), (22

whereG,, is a “‘gain matrix”;
<Fek(t)Fek'(t,)>=[<Pek(1_nek)>+<nek/7'nr>]

GII’E; 9k kD1 k(N + Ny — 1), 11 X Sk 6(t—t"), (23
wheren(»,) is the number of thermal photons in mobén

the cavity. We have used, in Eg4.9) and (20), the quasi-
equilibrium conditiong21]

where D, is a complex Lorentzian;D, ,=1[y+i(wy
—)]. A fluctuation operatoF, (t) has been defined by

Fa,|E—iE 97Dy kF ok s (12 d
K 2y(NekNpi) > a<neknhk>y (24

which is associated with the coupling between the carriers
and photons. d

From Eq.(10), we also find the QLE for the photon- 29{(1=ng)(1—np))> a((l—nek)(l—nhk»- (25
number operaton,=A/A,,

d We can also calculate the correlationsFgf ;

an|=_KPn|+z’ [G||IA|TA|r+H.C.]
! (FLI(OF (1)) =(Rep) S(t—t"), (26)
+[(FI +FHA+H.cl. (13)

T I\ 4
Substituting Eq(9) into Eq.(8), we also find the QLE for the (Foa(DF g, (1)) =(Raps)) St~ 1"), @7

total electron numben.=X,ng, .
¢ TkTek where R, (Raps;) denotes the spontaneous emission rate

into photon mode (the absorption rate of photon mote

d n
GiNe= 2 Pe(1=ne)— — =2 [Gy/AlA +H.c]
k oo ng 2 ,
Rsp,|=7__=_2 |91kl °L1 kNekNhk » (28
t Tl Y k
+; Fek—El [AJF, +H.c]. (14)

2
Raps|= — 2> 20 (1-Nng)(1—np). (29
C. Microscopic noise correlations of an LED abs| Yk |g|'k| Lk e hk
To discuss the statistical properties of light emitted from ) .
LEDs, we must determine the noise correlations. Hereafte}' © ?favg use? qulg) .and(ZO), angbdﬁ;neg,,. asa rflid'a'
we assume that the correlations between different modes &€ ! et_lmelc_) t ehcarrlefrs ln?o maock e(_wn;/ens;on ess
the photons and those between different wave numbers ¢forentzian line-shape functiodt,  is £, =y/[y"+ (wx

2
i be neglect¢did], i.e., ).
carriers can be neglectgtol, i.e At this stage, we have the following QLEs:
(ATDAL () =(n) -, (15 q
qi=—am+L(Fy +FDA+H.el, (30)
(oh (O o (1) =N S » (16)

a4, =S Pa(l-ng)— <~ (R~ Rape)
(ool () =((1-Ng) (1N S (A7) dte g TeeT T g, g el Tabs T

(Na(D)Ngr (1) =Ny i - (18) + 20 Fam 20 [A[F, +He), 3D

We can then calculate the noise correlations, which are conghere we have used
sistent with the QLE$6)—(8), using Eq.(5),

, , G, +G¥=R.,,—R , 32
(FL(OF e () =2 7N i St —t'),  (19) 1+ Gl =Rsp) ~ Ras 32

<Fak(t)F,T,k/(t')>”—“27((1—nek)(l—nhk)) and defined the renormalized photon escape rate

X Sy S(t—1"), (20) K1= K~ Rgp) + Rapg - (33



D. Semiconductor Langevin equations and the noise
correlations for an LED at a low-injection level

In what follows, we assunie
Rspi »Raps) < K7 - (34)
From Egs.(30) and(34), the QLE forn, at the LIL becomes

d

prill (39

_ 0
=K nI+Rsp,I+ Fn,l )

where we have defined a fluctuation operator,

Fo=[(FL +FDA+H.cl-[«n(»)+Rgy]. (36

The right-hand side is averaged to be zero because thﬁI

noises,F,, andF,,, have the Markovian propertyF A,
+H.c)=«n(») and(F} A+H.c)=Rg, .

From Egs.(34) and (35), the steady-state value of the
photon number becomes

(N)ss= I:zsp,l /K|O< 1,

(37
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rrEZ [—(AF, +H.c)+Rgy], (43
Fru=AF, +H.c—Rgy, (44)
I‘nr"' I‘PE ; Fek ’ (45)
Fo=AF+F/A, (46)

where we have neglected the number of thermal photons,

n(v), since this is the case in usual experiments. These
noise operatorsI;,F,,,I'y.I'p ,F ) are associated with
the radiative decay of carriers, the conversion from carriers
to photons, the nonradiative decay of carriers, (ih&insic)
mp fluctuation, and the photon escape from the cavity,
respectively. The mean values of the noises are defined to be
zero, of course.

From above, the noise correlation oy can be calculated
as

<F,(t>rr(t'>>22 (AL (DA NF o (OFT (1)

i.e., the photon number in each mode is quite small. On the

other hand, from Eq€31), (34), and(37), the QLE forn, at
the LIL becomes

p-le loyp
—n.=P———-—+F,,
dt ¢ T T O

(39)

whereP=3, Py (1—ng) is the total pump rate, and

EE E:IRsp,I —

ng |

1

Tl

(39

Ty

is the radiative decay rater(is the radiative lifetime of

carrierg. The fluctuation operator for the total electron num-

berF. is denoted by
FCEEI‘, [—(AFFU,,+H.C.)+RSD,,]+EK‘, Fex. (40

Note that the lifetimes €., and 7;) are carrier-numben,
dependent because,,, is an implicit function ofn..

We thus obtain the final forms of the semiconductor

QLEs at the LIL as follows:

N Ng

—n,;=P——=——+4Tp+T+

dtnc P s Tor 1_‘P I‘r 1_‘nr’ (41)
== On+ L E F 42
anl— Kn ™ ol rlo (42

where the noise operatofs, | ,F. have been divided into
new onesl'\,F,,.I',..I'p,F,,. They are given by

2Inequality(34), at first sight, might look rather strange. We there-

fore explain its validityat the LIL in the Appendix.

+(A (DAL E)XFT (OF ()]

ZZI [<Rsp,l+ Rabsl><nl>+<Rsp,l>]5(t_t,)

:EI<Rsp,|>6<t—t’)=<%>6<t—t’), (47

where, as done in Eq15), we have neglected, in the first
and second lines, the correlations between different modes.
We also have assumed the following:

FeZl [— (AL F, +H.c)T,

whereA;I is an operator uncorrelated with, | [24]. Thus
the property of fluctuationgI",)=0, still holds. Equations
(26) and (27) have also been used in the third line of Eq.
(47), and Egs(34), (37), and(39) in the fourth line of Eq.
(47).

Similarly we obtain

<Fr(t)F,’|(t’))=—<:—c|>5(t—t’), (48)
<Fr,|(t)Fr,|'(t')>:<:_cl>5||'5(t—t')a (49)
<Fnr(t)rnr(t’)>:<;>5(t_t’)r (50)
(Tp()p(t"))y=(P)o(t—1t"), (51)

where we have divided the correlatiofl,(t)I",(t"))
+(I'p(t)['p(t")) into two parts: one is the correlation of the
nonradiative processes, and the other that of the pump. These
semiconductor QLEs, Eq$41) and(42), and the noise cor-
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An,
7'r,l[nc]:(Tr,l)O(:I-_Kr,l n 0), (55
C
Ang
7'r[ﬂc]:TrO(l_Kr n )v (56)
c0
Photo-
detector An,
Tad Ne] = Tnro| 1+ Koy n O)a (57)
o]
FIG. 1. Definition of the, . Photons of modé are emitted into
the region between the solid lines. The photodetector can detect 1 _ 1
only some regioridenoted by the one between the dashed Jinés 7'_0= ” (7)o (58
the photons because its surface area is limited, and the quantum ’ .
efficiency » of the detector is less than §, is the probability that
a photon of modé is detected by the detector. It increases as the K,= _To o (59)
surface area and/ay do. I (Tr,|)o '

relations(47)—(51) were just assumed by {i82,25. Yaman- where quantit.ies Wit_h the subscrip'.[ _O.denot.e the average val-

ishi and Lee[5] also assumed similar ones; however, theyUes at a running poin® = P,. Sensitivity of lifetimes to the

did not include nonradiative processes. carrier-number fluctuationdn, is represented by, ,, K,
Furthermore, we focus on the total photon flak,which ~ @ndKp.. ThoughK, is usually positive, it is not always the

can be detected at the PD surface. To this end, we must firgRSe, as we will discuss in the next section.

two relations. One is the relation between the photon number Linearizing Egs.(41), (42), and (52) in terms of An,

in the cavity and the photon flux from the cavity. The other isAN=n—(n))o, AP=P—P,, and AV,=V,—(V)o, and

the relation between the photon flux from the cavity and thesubstituting Egs(55) and (57) into them, we obtain

photon flux detected at the PD surface. The input-output for-

malism[3,20] gives the first relation as S An,=AP— —C+Fp+Fr+Fm, (60
dt 7
V|:KPn|_FK,| ’ (52)

) _ d o Ang
whereV, is the photon flux of modé from the cavity. We mAn,z —kAn+ —+F,  +F, (61
next model the second relation using the argument of a beam |
splitter [20]. The relation between the mean flux Mfand 0
that of V| is given by AVi=kiAn—F,, (62

where we have used the following equilibrium conditions:

1 1 )
— 4+,
0 Tnro

<N>:E| §|<V|>E,302| (V)=Bu«V), (53

Po=nco

where¢, is a “transmission coefficient” of modk (see Fig.
1), By is the transfer efficienc{5], andV=2,V, is the total n n
photon flux from the cavity. The relation between the flux EI KIO(nI)O:Z ©__ ﬂzzl V0=Vo

correlation ofN and that ofV, is given by (7)o Tio
Po
~ 9 = =, (63
(AN@)P)=2 &(1-a)(Vi(Q) 1+ (710! 7or0)
and introduced the effective lifetimes defined as
+2 §&(AV(Q)AV (), (54
1L r_ 0 ' (7)o ;oo (64)
N N TTIEK, T IAK,, T 1-Ky,
where N(Q2) and V,(Q)) denote Fourier components of
andV,, respectively. 1 1 1
—=—+4—. (65)

7_// - T/ T!
IIl. CALCULATION OF THE PHOTON FANO FACTOR rooom

In this section, we calculate the Fano factor of phof@ijs PrOPPIng the noise terms in Eqe50)~(62), and using Eq.

which denotes the normalized fluctuation of the photon num{>3), We calculate the quantum efficienay and the differ-
ber detected at the PD surface. Following the standard smalntial quantum efficiencyyy as

signal analysis used in Refgl,5,7,14, we expand the radia- N /
tive and nonradiative lifetimes;, ,[n.], 7[n.], and 7, {n.], =_0 Bol o Po (66)

. . n= = = ’
to linear order inAn,=n;—nc: Po (lmot+1lmhe) 1+é€g
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A (@) 4 (b) S which consists of the modulatioAP(€2) and the intrinsic
. /" = // pump noisel'p(Q2). Note that the latter noise can be sup-
= = pressed by inelastic scattering in conduc{er8-10,26.
2 -0 ; 4 \ To see the physical meaning of E§0), let us introduce
Kl s / / Rggﬁglj‘G the Fano factor of the pump electro@ excitong W, and
£ - that of the photons detected at the PD surfa¢g, which
= POINT Sy are defined by
INJECTION (arb. units) INJECTION(arb. units) W) (|AP ()] -
FIG. 2. Typical IL (injection-light characteristics of LEDs are € PoT '
shown by the solid lines. The quantum efficiengyis the slope of
the straight line(represented by the dashed lineonnecting the <|AN(Q)|2>
origin and the running point, whereas the differential quantum effi- Worl)=—1F (72
. . . . . . 0
ciency 74 is the slope of the tangential lingchain line at the
running point. where T is the Fourier-integral time. We transform Egs.
(47)—(51) into the Fourier components:
_AND) _ Bo! 7 _ _bo 67) _ _ 1 - _
AR, WUy 1ve (FF (QF () =(TF (@T ()= (T ()
where IS Mo Pl
=~ (FOF (@)= =T=VeT= 3. (739
=0 o=t _17Kw (68  Substituting Eqs(70) and(73) into Eq. (54), and dividing by
Thro e, 1tK NoT, we finally obtain
2
These efficienciess and ,) are illustrated in Fig. 2. 2ng{1 7g 1+We(Q)
# and 74) g Wo(Q)=1- — =, (19

Note that the difference betweep and 74, which was
measured to be large.qg., 74/ 7>2 at the LIL[12]), cannot
be explained by the previous theories which assumggl where we have used Eg&3), (63), (66)—(68), and defined
= [4-6] or K,=K,=0 [7]. In this sense, our model is a the following:
minimal one that simulates real LEDs.

Hereafter we assume th& <« (~10' Hz), which is T 1o & ém

1+(Q7)2 7 1+(Q7")?

well satisfied in usual experimental conditions. Then the re- a1= S 7 (1em)o Bo Bo’ (79
sponse of the output photon flux to the modulation of the O
pump is calculated as , 2
_ Ty gl
{o= Bl (76)
ANQ)| g 9 o7, Po
Aﬁ(Q)‘ J1+02Z72 which represent effects due to multimodeness of LEDs, and

the consequences are discussed below. Note alsolthat

Hence 1+ is understood as a cutoff frequency. It is seen thats 1.{><1. . . o
the nonradiative processes push the cutoff to the higher fre- Equation(74) is our main result which gives the Fano

quency[see Eq.(65)]. factor of the photons detected at the PD surface as a function
On the other hand, the photon flux correlation betweerPf the Fano factor of the pump, measuring frequency, and
model andm is calculated using Eq$60)—(62) as several parametersy(7y,{1,{», and7"). Note that 1" be-

comes a cutoff frequency of the Fano factor as well as that of

. ~ ~ ~ the modulatiorisee Eq.(69)].
7 L <|Aptot|2>+<|Fr|2>+<|rnr|2>

(AVF ()AV ()=~
| ; 0 Tom 1+(Q7")? IV. DISCUSSION
i(F?Er,m> +i <FfEr,|> A. Low-frequency limit
11— o 1+i0s Let us examine Eq(74) in two casesf{)=0 and(>0,
" nm separately. We first discuss the low-frequency limit. This
+(F*F, ), (700  case is applicable to the most experiments, because they are

usually performed at the frequency which is lower than any

other relevant frequencies. Settifilg—0, we obtain

where a total pump nois&P,,, has been defined as
2

_1— 7
AP(0)=AP(Q)+Tp(Q), Wor(0)=1-2mgl1+ —[1+We(0)15z.  (77)
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There are several cases where this expression becomes sit  1°
pler.
T=3K
1. The case where photons are emitted and detected . T=15K -~ PPse
homogeneously. (the homogeneous case.) % o / T=80t(////
(h-1). When photons in each mode are emitted and de-> -
tected homogeneouslyi.e., whenK, =K,=const and{ o ///
= Bo=const, we have;={,=1, hence s T
()] //
74 S g0 | 7 :
Wpr(0)=1-2754+ 7[1+We(0)]- (78 W T
This is the formula that we have derived elsewh&@s. We
have implicitly assumed this properti-1) there, and this is 3
: : S . 10 :
a natural choice unless one considers a situation such the 10" 10™ 10"
inhomogeneity due to, e.g., cavity-QED effects becomes im- Sheet carrier density [m™]
portant.
(h-2). In addition to (h-1), when the nonradiative pro- FIG. 3. The spontaneous emissi¢BE) rate as a function of
cesses do not exist and/or the carrier-number dependence @rrier population in a doped-quantum-well structure in a microcav-
lifetimes cancels to be zero, i.er,o— and/orK,+K,, ity. Three curves correspond to different temperatufies: 80 K

=0, we haven= 74 and the IL(injection-light characteris- (bottom, T= 15 K (middle), andT= 3 K (top).
tics become straight. Hence, from E@8), we obtain
we hereafter consider the cagk-1) [Eqg. (78)], because
Wpr(0)=1—27+ [ 1+W,(0)] many LEDs seem to be categorized in this case. From Eq.
(78), we obtain
=1—n+ nWy(O0). 79
7+ nWe(0) (79) 0< 7g<7 82)
This is just the previous formula which is frequently used in

the literature[6—9,13. as the condition. It can be intuitively understood that the

flatter the IL characteristics, the duller the sensitivity of the
LED to the pump fluctuation. Hence, if IL characteristics are
like Fig. 2b), theneven a Poissonian pum@V.=1) can
produce sub-Poissonian lighNote that this mechanism is
Note that in the homogeneous case the factgrand{,  completely different from those of Reff7,13,27, because
do not appear in the expressions Wi, [Egs.(78) and(79)].  the authors 0{7,13,27 eventually make the current noise
On the other hand, they appear when emission and/or detenjected to the active layefselow PoissonianOn the other
tion efficiencies are different among different modes. Wehand, the conditiori82) is equivalent to
call this general case the “inhomogeneous case.” To inves-
tigate this case, let us consider a simple case wKere=0 K+ K,<0, (83
andK,,#0. In this case{;={,={, where

2. The case where photons are emitted and/or detected
inhomogeneously (the inhomogeneous case)

where we have used Eq$6)—(68). For simplicity, we here
To & r takeK,=0, and find below what is needed fii;<0.

= 2I (Tr,|)o E

(80) The spontaneous emissid8E) rate n./7, may be ex-
pressed approximately as. /7. (n.)P, wherep is a con-
stant. We therefore havwe,=p—1 from Eq.(56). It is well
known [21] that p=1 (p=2) in high- (low-) injection re-

Hence, from Eq(77), we obtain

2L gions for SE processes of free carriers. For exciton recombi-
W(0)=1—27p4( + L[1+We(0)]. (81) nation, we have=1 at the LIL. Thus we usually have non-
n negative values oK,. Making use of cavity-QED effects,

) however, we can obtainegativevalues ofK,. This is illus-
Compared with Eq(78), we see thaty and 74 are effec- a0 in Fig. 3 for ap-doped quantum well structure in a

tively multiplied by £ in Eq. (81). However, this does not micracavity, where we have assumed the following: the con-
mean that could be absorbed in and 7, because they are  4,ction band is parabolic, the effective electron mass is 0.1
already defined by Eq$66) and (67), respectively. Any re- imag the free electron mass, the doping level is high, and the
definition _wquld lead to disagreement with the observed 'Lcavity-QED effects prohibit SE except at the band edge.
characteristics. It is seen tha, becomes negative for the sheet carrier
density =10 m~? when temperatures are low enough
(maybe below 3 K In this case, we obtaipy< 7 [see Egs.

As another illustration of our result, we next discuss the(66)—(68)], and even a super-Poissonian pump can produce
condition for generation of sub-Poissonian ligk&PL) SPL. Exciton recombination with cavity-QED effects would
(Wpr<<1) with a Poissonian pumpN.=1). For simplicity, ~ work better, which will be discussed elsewhere. It has been

3. Condition for generation of sub-Poissonian light
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FIG. 4. The photon Fano factors are plotted as functions of frequénéyn units of 1/,,). (a) and(b) represent the cases whefe
=K,=0.5.(c) and(d) represent the cases whdfe=K,,= —0.5. The pump noise level is assumed to be z&RQ=0) and the Poissonian
level (W.=1) in (a),(c) and (b),(d), respectively. In each figure, the solid and dashed lines represent the cases where the nonradiative
recombination is significantr{y/m,,=1) and absent#,/7,,=0), respectively. The cutoff frequencies are indicated by vertical arrows.

therefore shown that our formui@4) is useful to find the the existence of nonradiative processes gives smdljgrin
condition fOI’ generation of SPL, or, of course, other quantumsome frequency reg|oE‘F|g 4(0)] or in the entire frequency
states of light. range[Fig. 4(d)]. In particular, Fig. 4d) shows that the Pois-
sonian pumping can produce SPL in a wide frequency range.
Figure 4c) also shows that the cutoff frequency far,q

Let us turn to the finite frequency cases. For simplicity, #«~ becomes higher than that fot,,=«~ as well as Fig.
here we use Edq74) with property(h-1), i.e.,{;=¢,=1,and  4(a) does.
assume the case wheke=K,, in Fig. 4. The solid lines It might be difficult, however, to observe these features
(dashed linesin Fig. 4 represent the cases when nonradiativeexperimentally, because they would not appear up tq, 1/
processes exigto not exis}. ~ 1 GHz. (Recently the photon Fano factor of LEDs has

been measured up to 40 MHZ2].)

B. Finite-frequency cases

1. When K=K,,=0.5

The noiselessW,=0) and PoissonianW,=1) pumps C. Comparison with the experimental results

are denoted by Figs.(d and 4b), respectively. Wherr, Hirano and Kugd9] reported that the previous formula
= oo (dashed linefs we recover the results similar to those of (79) disagrees with their experimental data in low-frequency
Yamanishi and Leg5]. We also see that the cutoff frequency regions: They measured the following ratio,

(indicated by a vertical arronfor 7,,,# > becomes higher
than that forr,, o= [Fig. 4@)]. Wor(We=0)

Won(Wom1) ®4

Er,
2. When K=K, =—05

The noiselessW.=0) and PoissonianW,=1) pumps
are denoted by Figs.(d and 4d), respectively. We find that

and obtained that <1- #, whereas Eq(79) givesr=1
— 7. Since the measuring frequen€y.asis low enough,
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TABLE |. The experimental values af, nq,r and the theoret- ( relax

ical values ofr (after Ref.[11]). %@ . (b) N CB

7 (Expt) ng (Expt) r (Expt) r[EQ.(85] r=1-79 i:;l,}zlurity

0.067 0.090 0.90 0.89 0.93 vE phonon

0.104 0.125 0.84 0.86 0.90 - emission
X

0.150 0.175 0.81 0.81 0.85

Eq. (78) to analyze their results. Our formu{@8) gives

detector

© vactive
i.e., Qmeas~10 MHz<1/7"~1 GHz, and their LEDs seem device ; K
to be categorized in the homogeneous das#), we can use  p \ _ ) _
sp.d Rabs, 1 Bi ,
e |
-+ cm

1—2 g+ 92l
P = M (85) region of our interest

C1-2p4+29%n

Vcavity

When 74> 7 (which is usually the case in low-injection re- FIG.5.(a) A sghematic band diagram of real LE[?S at the LIL,
gions[9—12)), our theory gives <1— 7, in agreement with (b) the Stokes Shlf[CB (VB) repr_esc_ents the_ conductidmalence
the experimental results. Furthermore, Hiragtal. [11] re- band, (_C) the absorptlon_and emission pr‘clnflleg a}‘ the LIL, 4dyl
cently confirmed that Eq85) agrees with their experimental the active layer, the devid¢.ED), and the “cavity.
data(see Table)l It is seen that the values of the previous
theory (=1— %) are larger than the experimental values,
whereas the values of E(B5) are closer to them. It also has
been shown that, wheW.=1, W, itself is larger than 1
[11]. This fact also supports our formulk@8) because it
gives, whenW,=1 and 54> 7, Wyn=1—2n4+275 7>1,
and their LEDs also have the propeny> 7 [9,11].

On the other hand, a simple argumébt,2§ leads to

generation of sub-Poissonian light is completely different
from those of the previous theories, which assumed sub-
Poissonian statistics for the current injected into the active
layers of LEDs. It was shown that our results agree with
recent experiments by Hirano, Kuga, and co-work6rs12).

We have also found that, in finite frequency regions, nonra-
diative processes sometimes give better regsftsallerWp,

, and/or a higher cutoff frequengyThese will deserve further

4 theoretical and experimental research of quantum aspects of
Wpr(0)=1— 75+ 7We(0)- (86)  Jight emitted from LEDSs.
Since| 7— 74| is small in Table 1, the difference between this ACKNOWLEDGMENTS
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V. SUMMARY

is valid at a low-injection level and in real devices as ex- APPENDIX: VALIDITY OF INEQUALITY  (34)
plained in the Appendix. Applying the semiconductor QLEs _ _ 0
to semiconductor LEDs, we obtain a formuia4) for the We here show that inequalit4), Rgp; ,Raps) < x| , holds

Fano factor of photons. It gives the photon-number statisticéor LEDs at a low-injection leve{LIL ). At the LIL, pumped

as a function of the pump statistics and several parameters 6frriers first relax to lower-energy states which are formed
LEDs, which are defined by Eq5)—(68), (75), and(76). by impurities, defects, spatial randomness, and so on, and
Key ingredients are nonradiative processes, carrier-numbéhen recombine to radiate photofisig. 5a]. Within the
dependence of lifetimes, and multimodeness of LEDs. Th&nergy region of our interest, where photons are emitted, we
formula is applicable to the actual cases where the quantufiius haveRg, ~R,ps . In addition, in real devices, there
efficiency # differs from the differential quantum efficiency exists a Stokes shiftFig. 5(b)] which makes, at low tem-
74, Whereas the previous theorigs-7] turn out to givey peraturesR,,s even smaller. Hence we have the absorption
=74. It is also applicable to cases where photons in eacl@nd emission profiles such as Figch

mode of the cavity are emitted and/or detected inhomoge- We now proceed to compamg apsy, With K|O. In Egs.
neously. Whenyy< 7 at the running point, in particular, our (28) and(29), |g; «|? is proportional to MV cayiry (Veaviy is the
formula predicts that even a Poissonian pump can produceolume of a cavity, and X, is to the volume of the active
sub-Poissonian lightsee Sec. IV A B This mechanism for layer Vg, hence we hav&qpansy,* Vactive! Veaviy- 1IN the
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analysis of laser diodes(LDs), it is customary to take natural to take the “cavity” volume as big as a cube on
Vacive=Veaviy, because LDS are made so that the lasingvhich the detector’s surface is locatgeig. 5d)]. Then K
modes are confined in the active layer. In this case, we uswean be estimated as Kflz(vcavity) 3¢+ Qtyevices Where
ally have Ry /c~10* cm 1> klic~107 cm™t (c is the  tgeviceiS @ time for photons to traverse the device. Sifre

velocity of light), thus we cannot obtain the inequalit§4). and tyeyice are small for LEDs, we hav&|°~—~c/(vca“,ity s

In the case of LEDs, on the other hand, they are usuallyrherefore, noting thaRaps; LV cayiry and & 1/(Veayin) 3,
designed in such a way that the reflection coefficients on theve can have the reIatioRabs,<K,°, if we take Vit big
boundary surfaces are small, hence most modes of photomsiough. Thus we obtain inequalit$4) for the case of LEDs

of our interest are not confined in the layer. In this case, it isat the LIL.
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