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Quantum Langevin equations for semiconductor light-emitting devices and the photon statistics
at a low-injection level

Hiroshi Fujisaki* and Akira Shimizu†

Institute of Physics, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
~Received 25 April 1997; revised manuscript received 17 December 1997!

From the microscopic quantum Langevin equations~QLEs! we derive the effective semiconductor QLEs and
the associated noise correlations which are valid at a low-injection level and in real devices. Applying the
semiconductor QLEs to semiconductor light-emitting devices~LEDs!, we obtain a formula for the Fano factor
of photons that gives the photon-number statistics as a function of the pump statistics and several parameters
of LEDs. Key ingredients are nonradiative processes, carrier-number dependence of the radiative and nonra-
diative lifetimes, and multimodeness of LEDs. The formula is applicable to the actual cases where the quantum
efficiencyh differs from the differential quantum efficiencyhd , whereas previous theories implicitly assumed
h5hd . It is also applicable to the cases where photons in each mode of the cavity are emitted and/or detected
inhomogeneously. Whenhd,h at a running point, in particular, our formula predicts that even a Poissonian
pump can produce sub-Poissonian light. This mechanism for generation of sub-Poissonian light is completely
different from those of previous theories, which assumed sub-Poissonian statistics for the current injected into
the active layers of LEDs. Our results agree with recent experiments. We also discuss frequency dependence
of the photon statistics.@S1050-2947~98!09504-3#

PACS number~s!: 42.50.Lc
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I. INTRODUCTION

There has been much research on quantum noise in l
emitting devices~LEDs! since the celebrated work of Shaw
low and Townes@1#. We here consider the quantum noise
semiconductor LEDs. This subject was first studied by Ha
and Haken@2#, who derived from a microscopic model us
ful formulas for the first- and second-order optical cohere
of LEDs.

Recently, much attention has been paid to sub-Poisso
light ~SPL!, which has lower intensity fluctuations than th
standard quantum limit@3#, of various LEDs@4–14#. The
mechanism for generation of SPL in LEDs is quite differe
from that of squeezed light in nonlinear crystals@15#. The
latter mechanism is well understood as a Bogoliuvov tra
formation of a coherent state into a squeezed state of l
@16#. The former mechanism, on the other hand, is of
described by the Langevin theory of lasers@3,17–21#. Previ-
ous studies on SPL in LEDs assumed that only a single m
or a few modes of photons are excited@4,6,14#. When the
injection level is lowered, however, many modes of photo
become relevant, and we must consider all of them. Sim
theories for such a case were reported in Refs.@5,7#. How-
ever, they aretoo simplified so that they cannot explain re
cent experiments by Hirano, Kuga~HK!, and co-workers@9–
11#, who demonstrated that the experimental results at a l
injection level ~LIL ! disagree with the predictions of th
simplified theories. The disagreement appears when
quantum efficiencyh differs from the differential quantum
efficiencyhd . HK @9# suggested that nonradiative process
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might be responsible for the disagreement.
In this paper, to resolve the discrepancy between the

vious theories and the experiments, we theoretically inve
gate the quantum noise in LEDsat a low-injection level@22#.
To this end, we extend the Langevin-equation method
Chow, Koch, and Sargent@21# to treat the case where man
photon modes are excited in an LED. From the microsco
quantum Langevin equations~QLEs! and the associated
noise correlations, we derive the semiconductor QLEs
the noise correlations at the LIL. An important assumption
that the photon-absorption and emission rates are m
smaller than the photon-escape rate from a ‘‘cavity.’’1 In the
experiment@12#, it has been reported thathd /h.2 in low-
injection regions, whereash.hd in high-injection regions.
The difference betweenh andhd is, in our theory, attributed
to nonradiative processes and the carrier-number depend
of lifetimes. They always exist in real LEDs, and becom
particularly important in low-injection regions. In contras
we can easily show that the previous simplified theories@4–
7# always giveh5hd . Hence our theory is a minimal one t
simulate real LEDs. A formula for the photon Fano factor@6#
is derived. It gives the photon-number statistics as a func
of the pump statistics, measuring frequency,h, hd , and
some factors arising frommultimodenessof LEDs. Simpli-
fied formulas are derived for homogeneous cases, in wh
photons in each mode of the cavity are emitted and dete
homogeneously, and for inhomogeneous cases, in which
are emitted and/or detected inhomogeneously. Using th
formulas, we discuss the condition for generation of SPL
an LED. Our results agree with the experimental results.

1The validity of this assumption with the meaning of the ‘‘cavity
will be explained in the Appendix.
3074 © 1998 The American Physical Society
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The paper is organized as follows. In Sec. II, we der
the semiconductor QLEs and the noise correlations at
LIL. In Sec. III, the semiconductor QLEs are used to der
a formula for the photon Fano factor. In Sec. IV, we exam
the formula in various cases, and compare our theory w
recent experiments@9–12#. In Sec. V, we summarize th
paper.

II. DERIVATION OF QUANTUM LANGEVIN EQUATIONS
AND THE NOISE CORRELATIONS

AT A LOW-INJECTION LEVEL

A. Microscopic Langevin equations of an LED

Chow et al. @21# discussed the case where asingle mode
is excited among many-photon modes of a cavity. Since
are mainly interested in the photon statistics of LEDs at
LIL, we extend their method to treatmany modesof photons.
The total HamiltonianHtot ~which describes multimode pho
tons in the cavity and carriers in the active layer of an LE!
is written as

Htot5Hmulti-ph1Hcarrier1Hdipole

1Hmany-body1Hbaths1Hbaths-sys, ~1!

Hmulti-ph5(
l

\n lal
†al , ~2!

Hcarrier5(
k

F S eg
01

\2k2

2me
D ck

†ck1
\2k2

2mh
d2k

† d2kG , ~3!

Hdipole5(
l ,k

\~gl ,k
0 d2k

† ck
†al1H.c.!, ~4!

whereHmulti-ph is the Hamiltonian of the multimode photon
al is the annihilation operator for the photons in model , and
n l is the field oscillation frequency in model . The Hamil-
tonian of the electrons and holes in the active layer
Hcarrier. The annihilation operators of the electron and h
of wave vectork are ck and d2k , respectively,me and mh
are the electron and hole effective masses, respectively,
eg

0 is the bare band-gap energy. The interaction among
carriers and the photons is represented byHdipole in the di-
pole approximation, withgl ,k

0 being the bare coupling con
stants, and H.c. means Hermite conjugate. Note that her
consider only a direct radiative transition; however, in re
devices there are other processes, and we will include t
when necessary. The many-body interaction between the
riers is represented byHmany-body, the Hamiltonian of baths
~or environments! byHbaths, and the interaction between th
baths and the system~the carriers and photons! byHbaths-sys.

To obtain QLEs, we start by making a mean-field a
proximation forHmany-body, and consequentlyeg

0 andgk,l
0 are

renormalized~see, e.g., Chap. 4 of Ref.@21#!. The renormal-
ized parameters are denoted byeg andgl ,k .

We then eliminateHbaths1Hbaths-sysby using the Markov
approximation@3,16–21#. As a result, the fluctuation and dis
sipation terms appear in the equations of motion. The ge
alized Einstein relation@16–18,20,21# gives the relation be-
tween the fluctuation and dissipation terms as follows:
e
e

e
th

e
e

s
e

nd
e

we
l
m
ar-

-

r-

2Dmn5
d

dt
^AmAn&2^DmAn&2^AmDn&, ~5!

where 2Dmn is a diffusion coefficient,Am is a system vari-
able, andDm is a dissipation term in Langevin equations, i.
Ȧm5Dm1Fm ,^Fm(t)Fn(t8)&52Dmnd(t2t8). The brackets
mean the ensemble average for fluctuations.

We finally obtain the following microscopic QLEs, whic
describe LEDs in a microscopic scale, for the dipole opera
sk5d2kcke

in l t, for the electric field operatorAl(t)
5al(t)e

in l t, and for the electron occupation probability ink
spacenek5ck

†ck ,

d

dt
sk52~g1 ivk2 in l !sk

1 i(
l 8

gl 8,kAl 8~ne k1nh k21!1Fsk , ~6!

d

dt
Al52S k l

0

2
1 i ~V l2n l ! DAl2 i(

k
gl ,k* sk1Fl , ~7!

d

dt
nek5Pek~12nek!2

nek

tnr

1(
l

~ igl ,k* Al
†sk1H.c.!1Fek , ~8!

where g is the dipole decay~dephasing! rate, \vk[eg
1\2k2/2me1\2k2/2mh is the transition energy, andFsk is
the fluctuation operator for the dipole. The hole occupat
probability in k space isnhk[d2k

† d2k . The photon escape
rate from the cavity isk l

05n l /Ql , whereQl is theQ factor
of the cavity,V l is the passive-cavity frequency, andFl is
the fluctuation operator for the electric field. The pump ra
due to a current injection or optical pumping isPek(1
2nek), where the factor (12nek) represents the pump
blocking @21#. Note that a lifetime of nonradiative decaytnr
has been introduced in Eq.~8!. As discussed later, the exis
tence of nonradiative processes is, in our model, a neces
condition for the difference between the quantum efficien
and the differential quantum efficiency to occur. The oth
condition is that the lifetime of radiative processes or that
nonradiative ones varies withnc . @See Eqs.~66!–~68!.# Non-
radiative processes might be modeled by the capture of
riers at a trapping level in an LED; however, we only ne
that tnr is an implicit function ofnc . These terms of pump
and nonradiative decay have been phenomenologically in
duced. The fluctuation operator for the electron numbe
Fek .

B. Adiabatic approximation

To derive more useful forms for later discussion, we u
the adiabatic approximation@19,23#, and approximate the so
lution of Eq. ~6! by

sk.
i ( l 8gl 8,kAl 8~nek1nhk21!1Fsk

g1 ivk2 in l
. ~9!

Substituting Eq.~9! into Eq. ~7!, we find
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Ȧl52@k l
0/21 i ~V l2n l !#Al1(

l 8
Gll 8Al 81Fl1Fs,l ,

~10!

whereGll 8 is a ‘‘gain matrix’’;

Gll 8[(
k

gl ,k* gl 8,kDl ,k~nek1nhk21!, ~11!

where Dl ,k is a complex Lorentzian;Dl ,k[1/@g1 i (vk
2n l)#. A fluctuation operatorFs,l(t) has been defined by

Fs,l[2 i(
k

gl ,k* Dl ,kFsk , ~12!

which is associated with the coupling between the carr
and photons.

From Eq. ~10!, we also find the QLE for the photon
number operatornl[Al

†Al ,

d

dt
nl52k l

0nl1(
l 8

@Gll 8Al
†Al 81H.c.#

1@~Fs,l
† 1Fl

†!Al1H.c.#. ~13!

Substituting Eq.~9! into Eq.~8!, we also find the QLE for the
total electron numbernc[(knek ,

d

dt
nc5(

k
Pek~12nek!2

nc

tnr
2(

l ,l 8
@Gll 8Al

†Al 81H.c.#

1(
k

Fek2(
l

@Al
†Fs,l1H.c.#. ~14!

C. Microscopic noise correlations of an LED

To discuss the statistical properties of light emitted fro
LEDs, we must determine the noise correlations. Herea
we assume that the correlations between different mode
the photons and those between different wave number
carriers can be neglected@19#, i.e.,

^Al
†~ t !Al 8~ t !&.^nl&d l l 8, ~15!

^sk
†~ t !sk8~ t !&.^neknhk&dk,k8 , ~16!

^sk~ t !sk8
†

~ t !&.^~12nek!~12nhk!&dk,k8 , ~17!

^nek~ t !nek8~ t !&.^nek&dk,k8 . ~18!

We can then calculate the noise correlations, which are c
sistent with the QLEs~6!–~8!, using Eq.~5!,

^Fsk
† ~ t !Fsk8~ t8!&.2g^neknhk&dk,k8d~ t2t8!, ~19!

^Fsk~ t !Fsk8
†

~ t8!&.2g^~12nek!~12nhk!&

3dk,k8d~ t2t8!, ~20!
rs

er
of
of

n-

^Fl
†~ t !Fl 8~ t8!&.k l

0n̄~n l !d l l 8d~ t2t8!, ~21!

^Fl~ t !Fl 8
†

~ t8!&.k l
0@ n̄~n l !11#d l l 8d~ t2t8!, ~22!

^Fek~ t !Fek8~ t8!&5@^Pek~12nek!&1^nek /tnr&#

3dk,k8d~ t2t8!, ~23!

wheren̄(n l) is the number of thermal photons in model in
the cavity. We have used, in Eqs.~19! and ~20!, the quasi-
equilibrium conditions@21#

2g^neknhk&@
d

dt
^neknhk&, ~24!

2g^~12nek!~12nhk!&@
d

dt
^~12nek!~12nhk!&. ~25!

We can also calculate the correlations ofFs,l ;

^Fs,l
† ~ t !Fs,l~ t8!&5^Rsp,l&d~ t2t8!, ~26!

^Fs,l~ t !Fs,l
† ~ t8!&5^Rabs,l&d~ t2t8!, ~27!

where Rsp,l (Rabs,l) denotes the spontaneous emission r
into photon model ~the absorption rate of photon model );

Rsp,l[
nc

t r,l
[

2

g(
k

ugl ,ku2Ll ,kneknhk , ~28!

Rabs,l[
2

g(
k

ugl ,ku2Ll ,k~12nek!~12nhk!. ~29!

We have used Eqs.~19! and~20!, and definedt r,l as a radia-
tive lifetime of the carriers into model . The ~dimensionless!
Lorentzian line-shape functionLl ,k is Ll ,k[g2/@g21(vk
2n l)

2#.
At this stage, we have the following QLEs:

d

dt
nl52k lnl1@~Fs,l

† 1Fl
†!Al1H.c.#, ~30!

d

dt
nc5(

k
Pek~12nek!2

nc

tnr
2(

l
~Rsp,l2Rabs,l !nl

1(
k

Fek2(
l

@Al
†Fs,l1H.c.#, ~31!

where we have used

Gll 1Gll* 5Rsp,l2Rabs,l , ~32!

and defined the renormalized photon escape rate

k l5k l
02Rsp,l1Rabs,l . ~33!
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D. Semiconductor Langevin equations and the noise
correlations for an LED at a low-injection level

In what follows, we assume2

Rsp,l ,Rabs,l!k l
0 . ~34!

From Eqs.~30! and~34!, the QLE fornl at the LIL becomes

d

dt
nl52k l

0nl1Rsp,l1Fn,l , ~35!

where we have defined a fluctuation operator,

Fn,l[@~Fs,l
† 1Fl

†!Al1H.c.#2@k l
0n̄~n l !1Rsp,l #. ~36!

The right-hand side is averaged to be zero because
noises,Fn,l and Fs,l , have the Markovian property:^Fl

†Al

1H.c.&5k l
0n̄(n l) and ^Fs,l

† Al1H.c.&5Rsp,l .
From Eqs.~34! and ~35!, the steady-state value of th

photon number becomes

~nl !s.s..Rsp,l /k l
0!1, ~37!

i.e., the photon number in each mode is quite small. On
other hand, from Eqs.~31!, ~34!, and~37!, the QLE fornc at
the LIL becomes

d

dt
nc5P2

nc

t r
2

nc

tnr
1Fc , ~38!

whereP[(kPek(12nek) is the total pump rate, and

1

t r
[

( lRsp,l

nc
[(

l

1

t r,l
~39!

is the radiative decay rate (t r is the radiative lifetime of
carriers!. The fluctuation operator for the total electron num
ber Fc is denoted by

Fc[(
l

@2~Al
†Fs,l1H.c.!1Rsp,l #1(

k
Fek . ~40!

Note that the lifetimes (t r,l and t r) are carrier-numbernc
dependent becauseRsp,l is an implicit function ofnc .

We thus obtain the final forms of the semiconduc
QLEs at the LIL as follows:

d

dt
nc5P2

nc

t r
2

nc

tnr
1GP1G r1Gnr , ~41!

d

dt
nl52k l

0nl1
nc

t r,l
1Fk,l1F r,l , ~42!

where the noise operatorsFn,l ,Fc have been divided into
new ones,G r ,F r,l ,Gnr ,GP ,Fk,l . They are given by

2Inequality~34!, at first sight, might look rather strange. We ther
fore explain its validityat the LIL in the Appendix.
he

e

-

r

G r[(
l

@2~Al
†Fs,l1H.c.!1Rsp,l #, ~43!

F r,l[Al
†Fs,l1H.c.2Rsp,l , ~44!

Gnr1GP[(
k

Fek , ~45!

Fk,l.Al
†Fl1Fl

†Al , ~46!

where we have neglected the number of thermal photo
n̄(n l), since this is the case in usual experiments. Th
noise operators (G r ,F r,l ,Gnr ,GP ,Fk,l) are associated with
the radiative decay of carriers, the conversion from carri
to photons, the nonradiative decay of carriers, the~intrinsic!
pump fluctuation, and the photon escape from the cav
respectively. The mean values of the noises are defined t
zero, of course.

From above, the noise correlation forG r can be calculated
as

^G r~ t !G r~ t8!&.(
l

@^Ac,l
† ~ t !Ac,l~ t8!&^Fs,l~ t !Fs,l

† ~ t8!&

1^Ac,l~ t !Ac,l
† ~ t8!&^Fs,l

† ~ t !Fs,l~ t8!&#

5(
l

@^Rsp,l1Rabs,l&^nl&1^Rsp,l&#d~ t2t8!

.(
l

^Rsp,l&d~ t2t8!5 K nc

t r
L d~ t2t8!, ~47!

where, as done in Eq.~15!, we have neglected, in the firs
and second lines, the correlations between different mo
We also have assumed the following:

G r.(
l

@2~Ac,l
† Fs,l1H.c.!#,

whereAc,l
† is an operator uncorrelated withFs,l @24#. Thus

the property of fluctuations,̂G r&50, still holds. Equations
~26! and ~27! have also been used in the third line of E
~47!, and Eqs.~34!, ~37!, and ~39! in the fourth line of Eq.
~47!.

Similarly we obtain

^G r~ t !F r,l~ t8!&52 K nc

t r,l
L d~ t2t8!, ~48!

^F r,l~ t !F r,l 8~ t8!&5 K nc

t r,l
L d l l 8d~ t2t8!, ~49!

^Gnr~ t !Gnr~ t8!&5 K nc

tnr
L d~ t2t8!, ~50!

^GP~ t !GP~ t8!&5^P&d~ t2t8!, ~51!

where we have divided the correlation̂Gnr(t)Gnr(t8)&
1^GP(t)GP(t8)& into two parts: one is the correlation of th
nonradiative processes, and the other that of the pump. T
semiconductor QLEs, Eqs.~41! and ~42!, and the noise cor-
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relations~47!–~51! were just assumed by us@22,25#. Yaman-
ishi and Lee@5# also assumed similar ones; however, th
did not include nonradiative processes.

Furthermore, we focus on the total photon flux,N, which
can be detected at the PD surface. To this end, we must
two relations. One is the relation between the photon num
in the cavity and the photon flux from the cavity. The other
the relation between the photon flux from the cavity and
photon flux detected at the PD surface. The input-output
malism @3,20# gives the first relation as

Vl5k l
0nl2Fk,l , ~52!

whereVl is the photon flux of model from the cavity. We
next model the second relation using the argument of a b
splitter @20#. The relation between the mean flux ofN and
that of Vl is given by

^N&5(
l

j l^Vl&[b0(
l

^Vl&[b0^V&, ~53!

wherej l is a ‘‘transmission coefficient’’ of model ~see Fig.
1!, b0 is the transfer efficiency@5#, andV[( lVl is the total
photon flux from the cavity. The relation between the fl
correlation ofN and that ofVl is given by

^uDÑ~V!u2&5(
l

j l~12j l !^Ṽl~V!&

1(
l ,l 8

j lj l 8^DṼl~V!DṼl 8~V!&, ~54!

where Ñ(V) and Ṽl(V) denote Fourier components ofN
andVl , respectively.

III. CALCULATION OF THE PHOTON FANO FACTOR

In this section, we calculate the Fano factor of photons@6#
which denotes the normalized fluctuation of the photon nu
ber detected at the PD surface. Following the standard sm
signal analysis used in Refs.@4,5,7,14#, we expand the radia
tive and nonradiative lifetimes,t r,l@nc#, t r@nc#, andtnr@nc#,
to linear order inDnc[nc2nc0:

FIG. 1. Definition of thej l . Photons of model are emitted into
the region between the solid lines. The photodetector can de
only some region~denoted by the one between the dashed lines! of
the photons because its surface area is limited, and the qua
efficiencyh of the detector is less than 1.j l is the probability that
a photon of model is detected by the detector. It increases as
surface area and/orh do.
y

nd
er

e
r-

m

-
ll-

t r,l@nc#5~t r,l !0S 12K r,l

Dnc

nc0
D , ~55!

t r@nc#5t r0S 12K r

Dnc

nc0
D , ~56!

tnr@nc#5tnr0S 11Knr

Dnc

nc0
D , ~57!

1

t r0
[(

l

1

~t r,l !0
, ~58!

K r5(
l

t r0

~t r,l !0
K r,l , ~59!

where quantities with the subscript 0 denote the average
ues at a running point,P5P0. Sensitivity of lifetimes to the
carrier-number fluctuationsDnc is represented byK r,l , K r ,
andKnr . ThoughK r is usually positive, it is not always the
case, as we will discuss in the next section.

Linearizing Eqs.~41!, ~42!, and ~52! in terms of Dnc ,
Dnl[nl2(nl)0, DP[P2P0, and DVl[Vl2(Vl)0, and
substituting Eqs.~55! and ~57! into them, we obtain

d

dt
Dnc5DP2

Dnc

t9
1GP1G r1Gnr , ~60!

d

dt
Dnl52k l

0Dnl1
Dnc

t r,l8
1Fk,l1F r,l , ~61!

DVl5k l
0Dnl2Fk,l , ~62!

where we have used the following equilibrium conditions

P05nc0S 1

t r0
1

1

tnr0
D ,

(
l

k l
0~nl !05(

l

nc0

~t r,l !0
5

nc0

t r0
5(

l
Vl05V0

5
P0

11~t r0 /tnr0!
, ~63!

and introduced the effective lifetimes defined as

t r8[
t r0

11K r
, t r,l8 [

~t r,l !0

11K r,l
, tnr8 [

tnr0

12Knr
, ~64!

1

t9
[

1

t r8
1

1

tnr8
. ~65!

Dropping the noise terms in Eqs.~60!–~62!, and using Eq.
~53!, we calculate the quantum efficiencyh and the differ-
ential quantum efficiencyhd as

h[
N0

P0
5

b0 /t r0

~1/t r011/tnr0!
5

b0

11e0
, ~66!

ct

um

e
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hd[
DÑ~V!

D P̃~V!
U

V→0

5
b0 /t r8

~1/t r811/tnr8 !
5

b0

11e8
, ~67!

where

e0[
t r0

tnr0
, e8[

t r8

tnr8
5

12Knr

11K r
e0 . ~68!

These efficiencies (h andhd) are illustrated in Fig. 2.
Note that the difference betweenh and hd , which was

measured to be large~e.g.,hd /h.2 at the LIL @12#!, cannot
be explained by the previous theories which assumedtnr0
5` @4–6# or K r5Knr50 @7#. In this sense, our model is
minimal one that simulates real LEDs.

Hereafter we assume thatV!k l
0 (;1012 Hz!, which is

well satisfied in usual experimental conditions. Then the
sponse of the output photon flux to the modulation of
pump is calculated as

UDÑ~V!

D P̃~V!
U5

hd

A11V2t92
. ~69!

Hence 1/t9 is understood as a cutoff frequency. It is seen t
the nonradiative processes push the cutoff to the higher
quency@see Eq.~65!#.

On the other hand, the photon flux correlation betwe
model andm is calculated using Eqs.~60!–~62! as

^DṼl* ~V!DṼm~V!&5
t9

t r,l8

t9

t r,m8

^uD P̃totu2&1^uG̃ru2&1^uG̃nru2&

11~Vt9!2

1
t9

t r,l8

^G̃r* F̃ r,m&

12 iVt9
1

t9

t r,m8

^G̃r* F̃ r,l&

11 iVt9

1^F̃ r,l* F̃ r,m&, ~70!

where a total pump noiseD P̃tot has been defined as

D P̃tot~V![D P̃~V!1G̃P~V!,

FIG. 2. Typical IL ~injection-light! characteristics of LEDs are
shown by the solid lines. The quantum efficiencyh is the slope of
the straight line~represented by the dashed line! connecting the
origin and the running point, whereas the differential quantum e
ciency hd is the slope of the tangential line~chain line! at the
running point.
-
e

t
e-

n

which consists of the modulationD P̃(V) and the intrinsic
pump noiseG̃P(V). Note that the latter noise can be su
pressed by inelastic scattering in conductors@4,8–10,26#.

To see the physical meaning of Eq.~70!, let us introduce
the Fano factor of the pump electrons~or excitons! We and
that of the photons detected at the PD surfaceWph, which
are defined by

We~V![
^uD P̃tot~V!u2&

P0T
, ~71!

Wph~V![
^uDÑ~V!u2&

N0T
, ~72!

where T is the Fourier-integral time. We transform Eq
~47!–~51! into the Fourier components:

^F̃ r* ~V!F̃ r~V!&5^G̃r* ~V!G̃r~V!&5
1

e0
^G̃nr* ~V!G̃nr~V!&

52^G̃r* ~V!F̃ r~V!&5
nc0

t r0
T5V0T5

P0T

11e0
. ~73!

Substituting Eqs.~70! and~73! into Eq.~54!, and dividing by
N0T, we finally obtain

Wph~V!512
2hdz1

11~Vt9!2
1

hd
2

h

11We~V!

11~Vt9!2
z2 , ~74!

where we have used Eqs.~53!, ~63!, ~66!–~68!, and defined
the following:

z1[(
l ,m

t r8

t r,l8

t r0

~t r,m!0

j l

b0

jm

b0
, ~75!

z2[F(
l

t r8

t r,l8

j l

b0
G 2

, ~76!

which represent effects due to multimodeness of LEDs,
the consequences are discussed below. Note also thaz1
<1,z2<1.

Equation ~74! is our main result which gives the Fan
factor of the photons detected at the PD surface as a func
of the Fano factor of the pump, measuring frequency, a
several parameters (h,hd ,z1 ,z2, andt9). Note that 1/t9 be-
comes a cutoff frequency of the Fano factor as well as tha
the modulation@see Eq.~69!#.

IV. DISCUSSION

A. Low-frequency limit

Let us examine Eq.~74! in two cases,V50 andV.0,
separately. We first discuss the low-frequency limit. Th
case is applicable to the most experiments, because the
usually performed at the frequency which is lower than a
other relevant frequencies. SettingV→0, we obtain

Wph~0!5122hdz11
hd

2

h
@11We~0!#z2 . ~77!

-
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There are several cases where this expression becomes
pler.

1. The case where photons are emitted and detected
homogeneously (the homogeneous case)

~h-1!. When photons in each mode are emitted and
tected homogeneously, i.e., when K r,l5K r5const andj l
5b05const, we havez15z251, hence

Wph~0!5122hd1
hd

2

h
@11We~0!#. ~78!

This is the formula that we have derived elsewhere@25#. We
have implicitly assumed this property~h-1! there, and this is
a natural choice unless one considers a situation such
inhomogeneity due to, e.g., cavity-QED effects becomes
portant.

~h-2!. In addition to ~h-1!, when the nonradiative pro
cesses do not exist and/or the carrier-number dependen
lifetimes cancels to be zero, i.e.,tnr0→` and/or K r1Knr
50, we haveh5hd and the IL~injection-light! characteris-
tics become straight. Hence, from Eq.~78!, we obtain

Wph~0!5122h1h@11We~0!#

512h1hWe~0!. ~79!

This is just the previous formula which is frequently used
the literature@6–9,13#.

2. The case where photons are emitted and/or detected
inhomogeneously (the inhomogeneous case)

Note that in the homogeneous case the factorsz1 andz2
do not appear in the expressions forWph @Eqs.~78! and~79!#.
On the other hand, they appear when emission and/or de
tion efficiencies are different among different modes. W
call this general case the ‘‘inhomogeneous case.’’ To inv
tigate this case, let us consider a simple case whereK r,l50
andKnrÞ0. In this case,z15z2[z, where

z[F(
l

t r0

~t r,l !0

j l

b0
G2

. ~80!

Hence, from Eq.~77!, we obtain

Wph~0!5122hdz1
hd

2z

h
@11We~0!#. ~81!

Compared with Eq.~78!, we see thath and hd are effec-
tively multiplied by z in Eq. ~81!. However, this does no
mean thatz could be absorbed inh andhd , because they are
already defined by Eqs.~66! and ~67!, respectively. Any re-
definition would lead to disagreement with the observed
characteristics.

3. Condition for generation of sub-Poissonian light

As another illustration of our result, we next discuss t
condition for generation of sub-Poissonian light~SPL!
(Wph,1) with a Poissonian pump (We51). For simplicity,
im-

-

at
-

of

c-
e
s-

e

we hereafter consider the case~h-1! @Eq. ~78!#, because
many LEDs seem to be categorized in this case. From
~78!, we obtain

0,hd,h ~82!

as the condition. It can be intuitively understood that t
flatter the IL characteristics, the duller the sensitivity of t
LED to the pump fluctuation. Hence, if IL characteristics a
like Fig. 2~b!, then even a Poissonian pump(We51) can
produce sub-Poissonian light. Note that this mechanism i
completely different from those of Refs.@7,13,27#, because
the authors of@7,13,27# eventually make the current nois
injected to the active layersbelow Poissonian. On the other
hand, the condition~82! is equivalent to

K r1Knr,0, ~83!

where we have used Eqs.~66!–~68!. For simplicity, we here
takeKnr50, and find below what is needed forK r,0.

The spontaneous emission~SE! rate nc /t r may be ex-
pressed approximately asnc /t r}(nc)

p, where p is a con-
stant. We therefore haveK r.p21 from Eq.~56!. It is well
known @21# that p.1 (p.2) in high- ~low-! injection re-
gions for SE processes of free carriers. For exciton recom
nation, we havep.1 at the LIL. Thus we usually have non
negative values ofK r . Making use of cavity-QED effects
however, we can obtainnegativevalues ofK r . This is illus-
trated in Fig. 3 for ap-doped quantum well structure in
microcavity, where we have assumed the following: the c
duction band is parabolic, the effective electron mass is
times the free electron mass, the doping level is high, and
cavity-QED effects prohibit SE except at the band edge.

It is seen thatK r becomes negative for the sheet carr
density *1014 m22 when temperatures are low enoug
~maybe below 3 K!. In this case, we obtainhd,h @see Eqs.
~66!–~68!#, and even a super-Poissonian pump can prod
SPL. Exciton recombination with cavity-QED effects wou
work better, which will be discussed elsewhere. It has b

FIG. 3. The spontaneous emission~SE! rate as a function of
carrier population in a doped-quantum-well structure in a microc
ity. Three curves correspond to different temperatures:T5 80 K
~bottom!, T5 15 K ~middle!, andT5 3 K ~top!.
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FIG. 4. The photon Fano factors are plotted as functions of frequencyV ~in units of 1/t r0). ~a! and ~b! represent the cases whereK r

5Knr50.5. ~c! and~d! represent the cases whereK r5Knr520.5. The pump noise level is assumed to be zero (We50) and the Poissonian
level (We51) in ~a!,~c! and ~b!,~d!, respectively. In each figure, the solid and dashed lines represent the cases where the nonr
recombination is significant (t r0 /tnr051) and absent (t r0 /tnr050), respectively. The cutoff frequencies are indicated by vertical arro
u

ty
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therefore shown that our formula~74! is useful to find the
condition for generation of SPL, or, of course, other quant
states of light.

B. Finite-frequency cases

Let us turn to the finite frequency cases. For simplici
here we use Eq.~74! with property~h-1!, i.e.,z15z251, and
assume the case whereK r5Knr in Fig. 4. The solid lines
~dashed lines! in Fig. 4 represent the cases when nonradiat
processes exist~do not exist!.

1. When Kr5Knr50.5

The noiseless (We50) and Poissonian (We51) pumps
are denoted by Figs. 4~a! and 4~b!, respectively. Whentnr0
5` ~dashed lines!, we recover the results similar to those
Yamanishi and Lee@5#. We also see that the cutoff frequenc
~indicated by a vertical arrow! for tnr0Þ` becomes higher
than that fortnr05` @Fig. 4~a!#.

2. When Kr5Knr52 0.5

The noiseless (We50) and Poissonian (We51) pumps
are denoted by Figs. 4~c! and 4~d!, respectively. We find that
m

,

e

f

the existence of nonradiative processes gives smallerWph in
some frequency region@Fig. 4~c!# or in the entire frequency
range@Fig. 4~d!#. In particular, Fig. 4~d! shows that the Pois
sonian pumping can produce SPL in a wide frequency ra
Figure 4~c! also shows that the cutoff frequency fortnr0
Þ` becomes higher than that fortnr05` as well as Fig.
4~a! does.

It might be difficult, however, to observe these featu
experimentally, because they would not appear up to 1t r0
; 1 GHz. ~Recently the photon Fano factor of LEDs h
been measured up to 40 MHz@12#.!

C. Comparison with the experimental results

Hirano and Kuga@9# reported that the previous formu
~79! disagrees with their experimental data in low-frequen
regions: They measured the following ratio,

Wph~We50!

Wph~We51!
[r , ~84!

and obtained thatr ,12h, whereas Eq.~79! gives r 51
2h. Since the measuring frequencyVmeas is low enough,
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i.e., Vmeas;10 MHz!1/t9;1 GHz, and their LEDs seem
to be categorized in the homogeneous case~h-1!, we can use
Eq. ~78! to analyze their results. Our formula~78! gives

r 5
122hd1hd

2/h

122hd12hd
2/h

. ~85!

Whenhd.h ~which is usually the case in low-injection re
gions@9–12#!, our theory givesr ,12h, in agreement with
the experimental results. Furthermore, Hiranoet al. @11# re-
cently confirmed that Eq.~85! agrees with their experimenta
data~see Table I!. It is seen that the values of the previo
theory (r 512h) are larger than the experimental value
whereas the values of Eq.~85! are closer to them. It also ha
been shown that, whenWe51, Wph itself is larger than 1
@11#. This fact also supports our formula~78! because it
gives, whenWe51 andhd.h, Wph5122hd12hd

2/h.1,
and their LEDs also have the propertyhd.h @9,11#.

On the other hand, a simple argument@11,28# leads to

Wph~0!512h1
hd

2

h
We~0!. ~86!

Sinceuh2hdu is small in Table I, the difference between th
formula and Eq.~78! is within the experimental error and i
not detectable. Further experimental studies are neede
observe the difference.

V. SUMMARY

From the microscopic QLEs~6!–~8!, the associated nois
correlations~19!–~23!, and the assumption~34!, we have
derived the effective semiconductor QLEs~41!, ~42!, and the
associated noise correlations~47!–~51!. The assumption~34!
is valid at a low-injection level and in real devices as e
plained in the Appendix. Applying the semiconductor QL
to semiconductor LEDs, we obtain a formula~74! for the
Fano factor of photons. It gives the photon-number statis
as a function of the pump statistics and several paramete
LEDs, which are defined by Eqs.~65!–~68!, ~75!, and ~76!.
Key ingredients are nonradiative processes, carrier-num
dependence of lifetimes, and multimodeness of LEDs. T
formula is applicable to the actual cases where the quan
efficiencyh differs from the differential quantum efficienc
hd , whereas the previous theories@4–7# turn out to giveh
5hd . It is also applicable to cases where photons in e
mode of the cavity are emitted and/or detected inhomo
neously. Whenhd,h at the running point, in particular, ou
formula predicts that even a Poissonian pump can prod
sub-Poissonian light~see Sec. IV A 3!. This mechanism for

TABLE I. The experimental values ofh,hd ,r and the theoret-
ical values ofr ~after Ref.@11#!.

h ~Expt.! hd ~Expt.! r ~Expt.! r @Eq. ~85!# r 512h

0.067 0.090 0.90 0.89 0.93
0.104 0.125 0.84 0.86 0.90
0.150 0.175 0.81 0.81 0.85
,

to

-

s
of

er
e
m

h
e-

ce

generation of sub-Poissonian light is completely differe
from those of the previous theories, which assumed s
Poissonian statistics for the current injected into the ac
layers of LEDs. It was shown that our results agree w
recent experiments by Hirano, Kuga, and co-workers@9–12#.
We have also found that, in finite frequency regions, non
diative processes sometimes give better results~smallerWph
and/or a higher cutoff frequency!. These will deserve furthe
theoretical and experimental research of quantum aspec
light emitted from LEDs.
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APPENDIX: VALIDITY OF INEQUALITY „34…

We here show that inequality~34!, Rsp,l ,Rabs,l!k l
0 , holds

for LEDs at a low-injection level~LIL !. At the LIL, pumped
carriers first relax to lower-energy states which are form
by impurities, defects, spatial randomness, and so on,
then recombine to radiate photons@Fig. 5~a!#. Within the
energy region of our interest, where photons are emitted,
thus haveRsp,l;Rabs,l . In addition, in real devices, ther
exists a Stokes shift@Fig. 5~b!# which makes, at low tem-
peratures,Rabs,l even smaller. Hence we have the absorpt
and emission profiles such as Fig. 5~c!.

We now proceed to compareRsp(abs),l with k l
0 . In Eqs.

~28! and~29!, ugl ,ku2 is proportional to 1/Vcavity (Vcavity is the
volume of a cavity!, and (k is to the volume of the active
layer Vactive, hence we haveRsp(abs),l}Vactive/Vcavity. In the

FIG. 5. ~a! A schematic band diagram of real LEDs at the LI
~b! the Stokes shift@CB ~VB! represents the conduction~valence!
band#, ~c! the absorption and emission profiles at the LIL, and~d!
the active layer, the device~LED!, and the ‘‘cavity.’’
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analysis of laser diodes ~LDs!, it is customary to take
Vactive.Vcavity, because LDS are made so that the las
modes are confined in the active layer. In this case, we u
ally haveRabs,l /c;104 cm21@k l

0/c;102 cm21 (c is the
velocity of light!, thus we cannot obtain the inequality~34!.
In the case of LEDs, on the other hand, they are usu
designed in such a way that the reflection coefficients on
boundary surfaces are small, hence most modes of pho
of our interest are not confined in the layer. In this case, i
tt.

.

st

.

h.
g
u-

ly
e
ns
s

natural to take the ‘‘cavity’’ volume as big as a cube o
which the detector’s surface is located@Fig. 5~d!#. Thenk l

0

can be estimated as 1/k l
0.(Vcavity)

1/3/c1Qtdevice, where
tdevice is a time for photons to traverse the device. SinceQ
and tdevice are small for LEDs, we havek l

0.c/(Vcavity)
1/3.

Therefore, noting thatRabs,l}1/Vcavity and k l
0}1/(Vcavity)

1/3,
we can have the relationRabs,l!k l

0 , if we take Vcavity big
enough. Thus we obtain inequality~34! for the case of LEDs
at the LIL.
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