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Time evolution of the condensed state of interacting bosons with reduced number fluctuation
in a leaky box
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We study the nonequilibrium time evolution of the Bose-Einstein condensate of interacting bosons confined
in a leaky box, when its number fluctuation is initially (t50) suppressed. We take account of quantum
fluctuations of all modes, includingk50, of the bosons. As the wave function of the ground state that has a
definite numberN of interacting bosons, we use a variational formuN,y&, which is obtained by operating a
unitary operatoreiG(y) on the number state of free bosons. UsingeiG(y), we identify a ‘‘natural coordinate’’b̂0

of the interacting bosons, by which many physical properties can be simply described. TheuN,y& can be
represented simply as a number state ofb̂0; we thus call it the ‘‘number state of interacting bosons’’~NSIB!.
To simulate real systems, for which if one fixesN at t50 N will fluctuate at later times because of a finite
probability of exchanging bosons between the box and the environment, we evaluate the time evolution of the
reduced density operatorr̂(t) of the bosons in the box as a function of the leakage fluxJ. We concentrate on
the most interesting and nontrivial time stage, i.e., theearly time stagefor which Jt!N, much earlier than the
time when the system approaches the equilibrium state. It is shown that the time evolution can be described
very simply as the evolution from a single NSIB att,0, into a classical mixture, with a time-dependent
distribution, of NSIBs of various values ofN at t.0. Using b̂0, we successfully define the cosine and sine
operatorsfor interacting many bosons, by which we can analyze the phase fluctuation in a fully quantum-
mechanical manner. We define a new stateuj,N,y& called the ‘‘number-phase-squeezed state of interacting

bosons’’ ~NPIB!, which is characterized by a complex parameterj. It is shown thatr̂(t) for t.0 can be

rewritten as the phase-randomized mixture~PRM! of NPIBs. Among many possible representations ofr̂(t),
this representation is particularly convenient for analyzing the phase fluctuations and the order parameter. We
study the order parameter according to a few typical definitions, as well as their time evolution. It is shown that
the off-diagonal long-range order~ODLRO! does not distinguish the NSIB and NPIB. Hence, the order
parameterJ defined from ODLRO does not distinguish them, either. On the other hand, the other order

parameterC, defined as the expectation value of the boson operatorĉ, has different values among these states.
In particular, for each element of the PRM of NPIBs, we show thatC evolves from zero to a finite value very
quickly. Namely, after the leakage of only two or three bosons, each element acquires a full, stable, and definite
~nonfluctuating! value ofC. @S1050-2947~99!05810-2#

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.70.Fh, 05.70.Ln
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I. INTRODUCTION AND SUMMARY

Bose-Einstein condensation~BEC! has been observed i
various systems@1#, including liquid helium@2#, excitons in
photoexcited semiconductors@3#, and atoms trapped by lase
beams@4–6#. Although BEC was originally discussed fo
free bosons, a condensate of free bosons does not hav
perfluidity @1#, hence many-body interactions are essentia
interesting behaviors of condensates. The condensed sta
interacting bosons in a box of finite volumeV is convention-
ally taken as the state in the Bogoliubov approximatio
which we denote byua0 ,ycl&cl

†see Refs.@7,8# and Eq.~20!
below‡. In this state, the boson numberN has finite fluctua-
tion, whose magnitude iŝdN2&.^N& @Eq. ~29!#. This fluc-
tuation is non-negligible in small systems, such as heli
atoms in a microbubble@9# and laser-trapped atoms@4–6#,
where ^N& is typically 103–106, and thus A^dN2&/^N&

*Electronic address: shmz@ASone.c.u-tokyo.ac.jp
†Electronic address: inoue@ASone.c.u-tokyo.ac.jp
PRA 601050-2947/99/60~4!/3204~16!/$15.00
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53 –0.1 %. This means that in such systems if one fixeN
with accuracy better than 3 –0.1 %, then^dN2&,^N&, thus
the stateua0 ,ycl&cl is forbidden, and another state should
realized. In most real systems, there is a finite probability
exchanging bosons between the box and the environm
Hence, if one fixesN at some time,N will fluctuate at later
times. Namely, the boson state undergoes a nonequilibr
time evolution when its number fluctuation is initially sup
pressed. The purpose of this paper is to investigate the
evolution of the interacting bosons in such a case, and
discuss how an order parameter is developed.

We first review and discuss the case where the box
closed and the boson numberN is exactly fixed~Sec. II!. The
ground-state wave function of such a case may be obta
by the superposition of Bogoliubov’s solutionua0 ,ycl&cl over
various values of the phase ofa0 @Eq. ~30!#. The resulting
stateuN,ycl&cl has the same energy asua0 ,ycl&cl because of
the degeneracy with respect to the phase ofa0. ~This degen-
eracy leads to symmetry breaking.! However, such an ex-
pression is not convenient for the analysis of physical pr
erties. To find the ground state in a form that is conveni
3204 ©1999 The American Physical Society
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for analyzing physical properties, we derive an effect

Hamiltonian Ĥ @Eq. ~9!#, which includes quantum fluctua
tions of all modes includingk50, from the full Hamiltonian

ĤB of interacting bosons. Here, we neglect effects due
spatial inhomogeneity of the boson states in the box, beca
we are not interested in such effects here, and also bec
we expect that the main physics of the nonequilibrium e
lution of our interest would not be affected by such effects

renormalization constantZg appears inĤ. AlthoughZg for-
mally diverges @Eq. ~7!#, the divergence is successful
renormalized, i.e., the final results are independent ofZg and

finite. As the ground state ofĤ, we use a variational form
uN,y&, which is similar to that of Girardeau and Arnowi
@10#. This form takes a compact form@Eq. ~31!#: it is ob-
tained by operating a simple unitary operatoreiG(y) on the
N-particle state of free bosons, whereG(y) is a simple bi-
quadratic function of the bare operators@Eq. ~32!#. This state
has the same energy asua0 ,ycl&cl, or, equivalently,uN,ycl&cl.
~Precisely speaking, they have the same energy density in
macroscopic limit, i.e., whenV→` while keeping the den-
sity n finite.!

Using the unitary operatoreiG(y), we then identify a
‘‘natural coordinate’’b̂0 @Eq. ~47!# of the interacting bosons
by which many physical properties can be simply describ
~Sec. III!. Unlike the quasiparticle operators obtained by t
Bogoliubov transformation,b̂0 is a nonlinear function of
bare operators. Moreover, the Hamiltonian isnot diagonal
with respect tob̂0. Such a nonlinear operator, however, d
scribes the physics very simply. For example,uN,y& is sim-
ply represented as a number state ofb̂0. We thus calluN,y&
the ‘‘number state of interacting bosons’’~NSIB!. We can
also define, throughb̂0, the cosine and sine operators f
interacting bosons~see below!. Moreover, usingb̂0, we de-
compose the boson fieldĉ into two parts@Eq. ~52!#: one
behaves anomalously asV→` and the other is a norma
part. In the decomposition, the nonunity (uZu,1) renormal-
ization constantZ ~which should not be confused with theZg
appearing in the Hamiltonian! is correctly obtained. This de
composition formula turns out to be extremely useful in t
following analyses.

Using these results, we study the nonequilibrium tim
evolution of interacting bosons in a leaky box~Sec. IV!. The
time evolution is induced if one fixesN at some time~thus
the boson state at that time is the NSIB!, because in most rea
systems there is a finite probability of exchanging bos
between the box and the environment, henceN will fluctuate
at later times. We simulate this situation by the followin
gedanken experiment: At some timet,0 one confinesex-
actly N bosons in a box of volumeV, and att50 a small
hole is made in the box, so that a small leakage fluxJ of the
bosons is induced. We concentrate on the analysis of
most interesting and nontrivial time stage; theearly time
stagefor which Jt!N, because it is clear that at later time
the system approaches the equilibrium state. We are in
ested in the reduced density operator of the bosons in
box; r̂(t)[TrE@ r̂ total(t)#, wherer̂ total(t) denotes the density
operator of the total system, and TrE the trace operation ove
the environment’s degrees of freedom. We successf
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evaluate the time evolution ofr̂(t) by a method which is
equivalent to solving the master equation. Our method gi
a physical picture more clearly than the master-equa
method. We obtainr̂(t) in a general form in which all the
details of the box-environment interactionĤES have been
absorbed in the magnitude of the leakage fluxJ. We show
that the time evolution can be described very simply in ter
of b̂0, as the evolution from a single NSIB att,0, into a
classical mixture, with a time dependent distribution,
NSIBs of various values ofN at t.0 @Eq. ~107!#.

We then discuss the phasef as a variable approximatel
conjugate to the numberN ~Sec. V!. To treat the quantum
phase properly, we consider the sine and cosine opera
sinf̂ and cosf̂. It is generally very difficult to define such
operators for interacting many-particle systems. Fortunat
however, in terms of the natural coordinateb̂0 we success-
fully define sinf̂ and cosf̂ for interacting bosons, using
which we can analyze the phase property in a fully quantu
mechanical manner. We define a ‘‘coherent state of inter
ing bosons’’~CSIB! @Eq. ~119!#, which, unlike Bogoliubov’s
ground stateua0 ,ycl&cl, exactlyhas the minimum value of the
number-phase uncertainty product@Eq. ~128!#. We also de-
fine a new stateuj,N,y& @Eq. ~133!#, which we call the
‘‘number-phase-squeezed state of interacting boso
~NPIB!, which has a smaller phase fluctuation than the CS
while keeping the number-phase uncertainty product m
mum @Eq. ~145!#. We point out thatr̂(t) for t.0 can be
represented as the phase-randomized mixture~PRM! of
NPIBs. Among many possible representations ofr̂(t), this
representation is particularly convenient for analyzing
phase fluctuations and the order parameter.

We also discuss the action of the measurements~or, their
equivalents! of N and off ~Sec. VI!. The forms ofr̂(t) after
such measurements are discussed. As an example o
phase measurement, we discuss an interference experi
of two condensates which are prepared independently in
boxes. It was already established fornoninteractingbosons
that the interference pattern is developed foreach experi-
mental run~although the interference disappears in theaver-
age over many runs! @11–13#. Using our formula for inter-
acting bosons, we show that the same conclusion is dr
very clearly and naturally forinteractingbosons.

We finally consider the order parameter according to
few typical definitions, as well as their time evolution~Sec.
VII !. We show that the off-diagonal long-range ord
~ODLRO! does not distinguish NSIB, NPIB, and CSIB
Hence, the order parameterJ defined from ODLRO@Eq.
~166!# does not distinguish them either. On the other ha
the other order parameterC, defined as the expectation valu
of the boson operatorĉ, has different values among thes
states. In particular, for each element of the PRM of NPIB
we show thatC evolves from zero to a finite value ver
quickly: After the leakage of only two or three bosons, ea
element acquires a full, stable, and definite~nonfluctuating!
value ofC.

II. PRELIMINARIES

A. Phase transitions in finite systems

We consider the phase transition of interacting bos
confined in a large, butfinite box of volumeV. Phase tran-
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3206 PRA 60AKIRA SHIMIZU AND JUN-ICHI INOUE
sitions are usually discussed in systems with aninfinite vol-
ume ~or, theV→` limit is taken at the end of the calcula
tion!, because infinite degrees of freedom are necessar
the relevant energy scale forstrict transitions@14#. In such a
case, we must select a single physical Hilbert space am
many possibilities, which selection corresponds to a st
phase transition. However, phase transitions do occur eve
systems of finiteV in the sense that a single phase la
longer than the time of observation if its linear dimensi
exceeds the correlation length at the temperature of inte
@14#. Hence, it is physically interesting and important to e
plore phase transitions in finite systems. Because of the
niteness ofV ~and the fact that the interaction potentialU is
well behaved!, von Neumann’s uniqueness theorem can
applied. This allows us to develop a theory in a unique H
bert space. However, sinceV is large, some quantities, whic
become anomalous in the limit ofV→` due to a strict phase
transition, behave quasianomalously. In later sections,
shall identify such a quasianomalous operator, and disc
how an order parameter is developed.

B. Effective Hamiltonian

We start from the standard Hamiltonian for interacti
bosons confined in a large, but finite box of volumeV:

ĤB5E
V
d3r ĉ†~r !S 2

\2

2m
¹2D ĉ~r !

1
1

2EV
d3r E

V
d3r 8ĉ†~r !ĉ†~r 8!U~r2r 8!ĉ~r 8!ĉ~r !.

~1!

Here, we neglect a confining potential of the box becaus
the present work we are not interested in its effects suc
the spatial inhomogeneity of the boson states in the box,
also because we expect that the main physics of the none
librium evolution of our interest would not be affected b
such effects.~Mathematically, our model under the period
boundary condition assumes bosons confined in a th
dimensional torus.! The r dependence of the boson fie
ĉ(r ) ~in the Schro¨dinger picture! can be expanded in term
of plane waves as

ĉ~r !5
1

AV
â01(

kÞ0

eik•r

AV
âk , ~2!

whereâp and âp
† are called creation and annihilation oper

tors, respectively, of bare bosons. The total number
bosons is given by

N̂[E
V
d3r ĉ†~r !ĉ~r !5(

k
âk

†âk . ~3!

We assume zero temperature, and consider the case w
the interaction is weak and repulsive@Eq. ~8! below#, and
where the boson densityn is finite ~hence, sinceV is large,
N@1):

n[^N&/V.0. ~4!
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In such a case, BEC occurs and typical matrix elements
â0 , â0

† , and N̂ are huge, whereas those ofâk and âk
† ~with

kÞ0) are small. Taking up to the second-order terms
these small quantities, and using the identity,N̂5â0

†â0

1(kÞ0âk
†âk , we obtain the effective HamiltonianĤ in the

following form:

Ĥ5g~11Zg!
N̂2

2V
2g~11Zg!

1

2V
â0

†â0

1(
kÞ0

S ek
(0)1g

N̂

V
D âk

†âk1F g

2V
â0â0(

kÞ0
âk

†â2k
† 1H.c.G .

~5!

Here,ek
(0) denotes the free-particle energy,ek

(0)[\2k2/2m,
andg is an effective interaction constant defined by

g[
4p\2a

m
. ~6!

Here, a is the scattering length, andZg is the first-order
‘‘renormalization constant’’ for the scattering amplitud
@15#:

Zg[
g

2V (
kÞ0

1

ek
(0)

. ~7!

The formal divergence of the sum in Eq.~7! does not matter
because the final results are independent ofZg @15#, hence
the renormalization is successful. We have assumed tha

0,na3!1, ~8!

under which the approximationĤB'Ĥ is good. We have
confirmed by explicit calculations that the term2$g(1
1Zg)/2V%â0

†â0 in Eq. ~5! gives only negligible contributions
in the following analysis. We thus drop it henceforth:

Ĥ5g~11Zg!
N̂2

2V
1(

kÞ0
S ek

(0)1g
N̂

V
D âk

†âk

1F g

2V
â0â0(

kÞ0
âk

†â2k
† 1H.c.G . ~9!

Since thisĤ commutes withN̂, we can in principle find its
eigenstates for whichN is exactly fixed. In each subspace
fixed N, Ĥ is equivalent to

Ĥ~N![
1

2
g~11Zg!n2V1(

kÞ0
ek8âk

†âk

1F g

2V
â0â0(

kÞ0
âk

†â2k
† 1H.c.G , ~10!

where

ek8[ek
(0)1gn. ~11!
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Note that if we regardedâ0 in Ĥ(N) as a classical comple
number@16#

â0→eifAN0[a0 , ~12!

and â0
† as a0* , we would then obtain the ‘‘semiclassical

HamiltonianĤcl as

Ĥcl5
1

2
g~11Zg!n2V1(

kÞ0
ek8âk

†âk

1S 1

2
gne2if(

kÞ0
âk

†â2k
† 1H.c.D , ~13!

where we have replacedN0 with N in the last parenthese
because the replacement just gives correction which is
higher order ing. This Hamiltonian can be diagonalized e
actly ~see, e.g., Ref.@15# in which f50). We shall utilize
this fact later to find the ground state ofĤ.

C. Known results for noninteracting bosons

Wheng50, the ground state offree bosons whose num
ber N is fixed is simply a number state,

uN&[
1

AN!
~ â0

†!Nu0&, ~14!

whereu0& denotes the vacuum of the bare operators;

âku0&50 for all k. ~15!

The energy ofuN&,

EN5Ne0
(0)50, ~16!

is degenerate with respect toN. Hence, any superposition o
uN& is also a ground state. For example, the coherent sta

ua&[e2uau2/2(
N50

`
aN

AN!
uN&5e2uau2/2eaâ0

†
u0&, ~17!

wherea[eifAN, is also a ground state that has the sa
expectation value ofN̂ as uN&. On the other hand,ua& has a
finite fluctuation ofN,

^dN2&[Š~N̂2^N̂&!2
‹5uau25^N&, ~18!

whereasuN& has a definiteN. The inverse transformation
from ua& to uN& can be accomplished as

uN&5E
2p

p df

2p
ua&. ~19!

D. Known results for Ĥ cl

NeitheruN& nor ua& is an eigenstate wheng.0. If we can
regardâ0 and â0

† as classical numbersa0 (5eifAN0) and

a0* , respectively, we can useĤcl as the Hamiltonian, and its
ground state was given by Bogoliubov as@1,7,8#
of

e

e

ua0 ,ycl&cl[ expF S a0â0
†2

1

2(
qÞ0

yq
cl * âq

†â2q
† D 2H.c.G u0&,

~20!

where

yq
cl5uyq

clue22if, ~21!

coshuyq
clu5Aeq1eq

(0)1gn

2eq
, ~22!

sinhuyq
clu5

gn

A2eq~eq1eq
(0)1gn!

. ~23!

Here,eq is the quasiparticle energy,

eq[Aeq
(0)~eq

(0)12gn!, ~24!

whose dispersion is linear foreq
(0)!gn:

eq'Agn

m
uqu. ~25!

The ground-state energy is calculated as@15#

Ea,ycl
cl

5
1

2
gnNS 11

128

15
Ana3

p D ~26!

5
1

2
gnN1O~g2.5!. ~27!

The absence of theO(g2) term inEa,ycl
cl means that the large

~formally divergent becauseZg→`) positive energy
gZgnN/2 of Ĥcl is canceled by a large negative term arisi
from the pair correlations. The expectation value and va
ance ofN̂ for ua0 ,ycl&cl are evaluated as

^N&cl5N01(
qÞ0

~sinhuyq
clu!2, ~28!

^dN2&cl5^N&cl1(
qÞ0

~sinhuyq
clu!4. ~29!

E. Ground state of a fixed number of bosons

In analogy to Eq.~19!, it is possible to construct an ap
proximate ground state ofĤ(N) from ua0 ,ycl&cl as

uN,ycl&cl[E
2p

p df

2p
ua0 ,ycl&cl, ~30!

whereN[^N&cl, Eq. ~28!. We can obtain an explicit form o
uN,ycl&cl in the form of an infinite series expansion, by in
serting Eq.~20! into the right-hand side of Eq.~30!, expand-
ing the exponential function, and performing thef integral.
However, such an expression is not convenient for the an
sis of physical properties. Note that in many-particle phys
it is generally difficult to evaluate physical properties even
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the wave function is known. It is therefore essential to fi
the ground state in the form that is convenient for analyz
physical properties.

Several formulations were developed for the condensa
of interacting bosons with a fixedN. Lifshitz and Pitaevskii
@15# developed aformal discussion for the case of fixedN.
However, they did not treatâ0 as an operator, henceN̂ was
not conserved. For example,b̂p

†um,N& ~in their notations! did
not have exactlyN11 bosons. To treat interacting boso
with fixed N more accurately, one has to include quantu
fluctuations of all modes~including k50), by treatingâ0 as
an operator. Such treatment was developed, for example
Girardeau and Arnowitt@10#, Gardiner@17#, and Castin and
Dum @18#. A variational form was proposed in Ref.@10# for
the wavefunction of the ground state. The variational fo
takes account offour-particle correlations in an elabora
manner, and is normalized exactly. On the other hand
Refs. @17,18# no explicit form was derived for the ground
state wave function.~These references are more interested
excited states and the spatially inhomogeneous case, r
than the ground-state wave function.! We here use a varia
tional form, which is similar to that of Ref.@10#, as the
ground state ofĤ(N);

uN,y&[eiG(y)
1

AN!
~ â0

†!Nu0&. ~31!

Here,Ĝ(y) is the Hermite operator defined by

Ĝ~y![
2 i

2nV
â0

†â0
†(

qÞ0
yqâqâ2q1H.c., ~32!

wherey[$yq% are a set of variational parameters, which a
taken as

yq5uyq
clu. ~33!

Using the well-known formula for arbitrary operatorsÂ and
B̂,

eÂB̂e2Â5B̂1†Â,B̂] 1
1

2!
@Â,@Â,B̂#‡1•••, ~34!

we find from Eqs.~31! and ~32! that

EN,y[^N,yuĤuN,y&5
1

2
gnN1o~g2!, ~35!

where o(g2) denotes terms which tend to zero asg→0,
faster thang2. This demonstrates that the large~formally
divergent becauseZg→`) positive energygZgnN/2 in
Ĥ(N) is canceled by a large negative term arising from
four-particle correlations of the state of Eq.~31!. Moreover,
we can also show that in the macroscopic limit (V→` while
keepingn constant!, EN,y becomes as low asEa,ycl

cl of Eq.
~26!. Therefore, the form of Eq.~31! is a good approximation
to the ground state. Note thatuN,y& is an eigenstate ofN̂:

N̂uN,y&5NuN,y&, ~36!
g

n

by

in

n
her

e

e

henceuN,y& is an ~approximate! ground state ofĤ:

ĤuN,y&5Ĥ~N!uN,y&. ~37!

Note also thatuN,y& is exactly normalized to unity becaus
eiG(y) in Eq. ~31! is a unitary transformation~although it
becomes nonunitary in the limit ofV→`).

We should make a remark here. In the case ofua,ycl&cl

discussed in Sec. II D,Ea,ycl
cl becomes low enough only fo

the specific choice of the phase ofyq
cl @Eq. ~21!#. This phase

relation is sometimes called the ‘‘phase locking’’@7#. From
this viewpoint, it is sometimes argued@7,19# that ‘‘having a
definite phase’’ and the ‘‘phase locking’’ are necessary
achieve a low energy. However, such a statement is ra
misleading: In our case, the phase locking corresponds to
fact thatyq’s are real and positive. On the other hand, o
ground stateuN,y& has no fluctuation inN, hencehas no
definite phase@20# because of the number-phase uncertai
relation,

^dN2&^df2&*1/4. ~38!

Nevertheless, the energy ofuN,y& is as low asEa,ycl
cl . That is,

‘‘having a definite phase’’ isnot necessary to achieve th
ground-state energy, and thus the term ‘‘phase lockin
should be taken carefully.

F. Ground state of N2DN bosons

The ground state ofN2DN bosons is given by Eqs.~31!
and ~32! in which N is all replaced withN2DN. However,
we are interested in the case where~see Sec. IV!

uDNu!N. ~39!

In this case,Ĝ(y) andy ~which are functions of the densit
of bosons! of N2DN bosons are almost identical to those
N bosons because (N2DN)/V'N/V5n. Therefore, we can
simplify the calculation by using the sameĜ(y) andy for all
DN. That is, we take

uN2DN,y&5eiG(y)
1

A~N2DN!!
~ â0

†!N2DNu0&, ~40!

where Ĝ(y) and y are those ofN bosons. Despite the ap
proximation, this state is exactly normalized and has exa
N2DN bosons;

N̂uN2DN,y&5~N2DN!uN2DN,y&. ~41!

III. NATURAL COORDINATE

A. Nonlinear Bogoliubov transformation

Since we assume thatV is finite, eiG(y) is a unitary opera-
tor ~which, however, becomes nonunitary in the limit ofV

→`). Utilizing this fact, we define new boson operatorsb̂k
by

b̂k[eiĜ(y)âke
2 iĜ(y). ~42!

This operator satisfies the same commutation relations asâk ;
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@ b̂p ,b̂q
†#5dp,q , @ b̂p ,b̂q#5@ b̂p

† ,b̂q
†#50. ~43!

Note that these relations are exact, in contrast to the ope
bk (kÞ0) of Ref. @17#. Owing to the exact commutatio
relations, we can define the vacuum ofb̂k’s by

b̂ku0,y&50 for all k. ~44!

From Eqs.~15!, ~32!, and~42!, we have@21#

u0,y&5eiĜ(y)u0&. ~45!

The transformation~42! somewhat resembles the Bog
liubov transformation which diagonalizesĤcl @15#. However,
in contrast to Bogoliubov’s quasiparticles~whose total num-
ber differs fromN̂ as an operator!, the total number operato
of b̂k’s is identical to that ofâk’s because@N̂,Ĝ(y)#50;

(
k

b̂k
†b̂k5eiĜ(y)N̂e2 iĜ(y)5N̂. ~46!

This property is very useful in the following analyses. On t
other hand, the transformation~42! is much more compli-
cated than the Bogoliubov transformation: The latter is
linear transformation connecting the bare operators w
quasiparticle operators, whereas the former is anonlinear
transformation between the bare operators and the new
son operators. For example,b̂0 defined by

b̂0[eiĜ(y)â0e2 iĜ(y) ~47!

is a rather complicated, nonlinear function ofâk’s and âk
†’s

~of various k’s including k50), as can be seen using E
~34!. Such a nonlinear operatorb̂0, however, describes th
physics quite simply. Namely, we show thatb̂0 ~andb̂0

†) is a
‘‘natural coordinate’’@22# of interacting bosons in the sens
that many physical properties can be simply described.~It is
crucial to find such a coordinate for the analysis of ma
particle systems, because generally the knowledge of
wave function is not sufficient to perform the analysis.! For
example, from Eqs.~31!, ~42!, and~44!, we find that in terms
of b̂0 the ground stateuN,y& is simply a number state;

uN,y&5
1

AN!
~ b̂0

†!Nu0,y&. ~48!

In particular,

b̂0uN,y&5ANuN21,y&. ~49!

Sinceb̂k’s of kÞ0 commute withb̂0, we also find that

b̂kuN,y&50 for all kÞ0. ~50!

Therefore, in terms of the new boson operators the gro
state of the interacting bosons can be simply viewed a
single-mode(k50) number state. Note, however, that th
does not mean thatĤ was bilinear and diagonal with respe
to b̂0. In fact, if it were the case then the energyEN,y would
tor

a
h

o-

-
he

d
a

be linear inN, in contradiction to Eq.~35!, which shows
EN,y}N2 ~recall thatn5N/V).

The usefulness ofb̂0 is strongly suggested by Eqs.~48!
and~50!. We will show in the following discussions that thi
is indeed the case.

B. Decomposition ofĉ

Some matrix elements ofb̂0 become anomalously large
among the ground~and excited! states of differentN. For
example,

^N21,yub̂0uN,y&5AN5AnV. ~51!

This indicates that in theV→` limit ~while keeping the
densityn finite! b̂0 does not remain an annihilation operat
of the physical Hilbert space, signaling that a strict pha
transition should occur asV→`. Since this anomaly should
have important effects even for a finiteV, it is appropriate to
separateb̂0 from the other terms ofĉ. That is, we decom-
pose the boson field in a finite system as@cf. Eq. ~2!#

ĉ5
Z1/2

AV
b̂01ĉ8, ~52!

where Z is a complex renormalization constant. Since w
have specified nothing aboutĉ8 at this stage, this decompo
sition is always possible andZ is arbitrary. Following Ref.
@15#, we define the ‘‘wave function of the condensate’’J by

J[^N21,yuĉuN,y&. ~53!

Since J is independent ofr ~because bothuN21,y& and
uN,y& have the translational symmetry!, we can takeZ as

J5Z1/2^N21,yub̂0uN,y&/AV. ~54!

That is, from Eq.~48!,

Z1/25J/An. ~55!

Then, by taking the matrix element of Eq.~52! between
uN2DN,y& and uN,y&, we find

^N2DN,yuĉ8uN,y&50 for ;DN ~ uDNu!N!. ~56!

We now define two number operators by

N̂8[E d3r ĉ8†~r !ĉ8~r !, ~57!

N̂0[N̂2N̂8. ~58!

Then, from Eqs.~48!, ~52!, ~55!, and~56!, we find

^N,yuN̂uN,y&5VuJu21^N,yuN̂8uN,y&. ~59!

Hence, from Eq.~58!,

^N,yuN̂0uN,y&5VuJu2, ~60!
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which may be interpreted as the ‘‘number of condensate
ticles’’ @15#. That is, in agreement with the standard res
@15#, uJu2 is the density of the condensate particles:

uJu25^N0&/V[n0 , ~61!

where we have denoted the expectation value simply
^•••&. We can therefore writeJ as

J5An0eiw. ~62!

We thus find the formula for the decomposition ofĉ as

ĉ5eiwAn0

nV
b̂01ĉ8, ~63!

which is extremely useful in the following analysis. No
that we have obtained the finite renormalization:

uZu5n0 /n,1. ~64!

C. Relation to the previous work

Lifshitz and Pitaevskii@15# introducedan operatorĴ that
transforms an eigenstate withN bosons into the correspond
ing eigenstate withN21 bosons,without giving an explicit

form of Ĵ. ~They definedĴ through its matrix elements
between eigenstates with different values ofN. However, as
mentioned in Sec. II E, they did not give the forms of t
eigenstates of fixedN.! They decomposedĉ as†Eq. ~26.4! of
Ref. @15#‡

ĉ5Ĵ1ĉ8. ~65!

In the present paper, from Eqs.~47! and ~63!, we obtain the

explicit expression forĴ as

Ĵ5eiwAn0

nV
b̂05eiwAn0

nV
eiĜ(y)â0e2 iĜ(y). ~66!

From Eqs.~49! and ~62!, we confirm that

ĴuN,y&5JuN21,y&, ~67!

which wasassumedin Ref. @15#. The operatorĴ character-
izes the condensation by having a finite matrix element@15#.

In the following we will reveal a striking property ofĴ ~or,
equivalently,b̂0); it is a ‘‘natural coordinate’’ of interacting
bosons.

On the other hand, other operators, which also charac
ize the condensation, were introduced in Refs.@10,17,18#.
Girardeau and Arnowitt@10# definedb̂0[â0N̂0

21/2, Gardiner

@17# introducedÂ5â0(N̂0 /N̂)1/2
†which is an operator form

of Eqs.~9! and~10! of Ref. @17#‡, and Castin and Dum@18#

introduced âFex
[* dr Fex* (r ,t)ĉ(r ,t). These operators ar

totally different from Ĵ or b̂0 because complicated many

particle correlations, which are included inĴ andb̂0, are not
included in b̂0 , Â, and âFex

. For example,âFex
is a linear

combination of annihilation operators of free bosons
whereasb̂0 is a nonlinear function of both the annihilation
r-
t

y

r-

and creation operators of free bosons. As a result, in con
to Eqs.~49! and~67!, application of eitherb̂0 , Â, or âFex

to
the ground state ofN bosons does not yield the ground sta
of N21 bosons; it yields an excited state which is not
eigenstate. Moreover, they are not a natural coordinate
interacting bosons in the sense explained in the followi
Therefore, we do not use these operators, although
would be useful in other problems.

D. Low-lying excited states

Excited states of a fixed number of interacting boso
were discussed in Refs.@10,17,18#. In the present formula-
tion, we may obtain low-lying excited states by the applic
tion to uN,y& of functions ofb̂k

†’s with kÞ0. However, since
we do not need any explicit expressions of the excited st
in the following analyses, we do not seek them in the pres
paper.

IV. TIME EVOLUTION OF BOSONS IN A LEAKY BOX

The time evolution of a condensate~s! in an open box~es!
was discussed previously for the cases ofnoninteracting
bosons in Refs.@11–13# and for the case oftwo-modeinter-
acting bosons in Ref.@23#. In the present paper, usingb̂0, we
study the case of infinite-mode interacting bosons.

A. Gedanken experiment

In most real systems, there is a finite probability of e
changing bosons between the box and the environm
Hence, even if one fixesN at some time,N will fluctuate at
later times. Namely, the boson state undergoes a nonequ
rium time evolution when its number fluctuation is initiall
suppressed. To simulate this situation, we consider the
lowing gedanken experiment~Fig. 1!.

FIG. 1. Our gedanken experiment.N bosons are confined in a
closed box fort,0. At t50 a small hole is made in the box, so th
a small leakage fluxJ is induced, and the expectation value^N(t)&
of the number of bosons in the box decreases with time.
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Suppose that bosons are confined in a box which is kep
zero temperature, and that the wall of the box is not perm
able to the flow of the bosons, i.e., the probability of a bos
permeating through the wall within a time scale of our int
est is negligible. If one measures the number of the boson
a time t5tp (,0), and if the box is kept closed untilt50,
then the density operatorr̂(t) of the bosons in the box fo
tp,t,0 is

r̂~ t !5uN,y&^N,yu for tp,t,0. ~68!

Assume that this box is placed in a large room, which has
bosons initially. Suppose now that att50 one makes a sma
hole~s!, or slightly lowers the potential of the wall of the bo
so that a small but finite flowJ of the bosons from the insid
to the outside of the box becomes possible fort>0. We
study the time evolution fort>0 of the density operatorr̂(t)
of the bosons in the box.

The expectation value ofN will be a decreasing function
of t, which we denotêN(t)& @hence^N(0)&5N]. It is ob-
vious that ast→` the system approaches the equilibriu
state. Therefore, we are most interested inthe early stage of
the time evolution, for which

uN2^N~ t !&u!N. ~69!

Note that if J were not small enough, then the state in t
box would evolve into a nonequilibrium excited state. T
property of such a nonequilibrium state would depe
strongly on details of the structures of the box and the h
or wall. In the present paper, we are not interested in s
structure-sensitive states. Therefore, we assume thatJ is
small enough that only transitions between the ground st
for different values ofN are possible.

B. Total Hamiltonian

Let V denote the volume of the room, which is muc
larger than the volumeV of the box;

V@V. ~70!

The total boson fieldĉ total(r ) is defined onV,

ĉ total~r !5ĉ~r !1ĉE~r !, ~71!

whereĉ(r ) is localized in the box, andĉE[ĉ total2ĉ is the
boson field of ‘‘environment.’’ Then, the total Hamiltonia
may take the following form:

Ĥ total5Ĥ1ĤE1ĤES, ~72!

whereĤ andĤE are the Hamiltonians of theĉ andĉE fields,
respectively, when the box is closed. Small but finite am
tudes of scattering between theĉ andĉE fields are caused by
the residual HamiltonianĤES. Under our assumption~8!, the
probability of multiparticle collisions during the escape fro
the box is negligible. Therefore,ĤES should take the follow-
ing form:

ĤES5lE d3r ĉE†~r ! f ~r !ĉ~r !1H.c., ~73!
at
e-
n
-
at

o

d
le
h

es

-

wherel is a constant which has the dimension of ener
and f (r ) is a dimensionless function which takes values
order unity whenr is located in the boundary region betwee
the box and the environment, andf (r )50 otherwise. Al-
though the value ofl and the form off depend on the struc
tures of the box and the hole or walls, our final results@e.g.,
Eq. ~107!# are independent of such details.

C. Low-lying states of the total system

We here list states of the total system which are relev
to the following analyses. SinceĤES is weak, quasieigen-
states of the total system are well approximated by the pr
ucts of eigenstates of the box and of the environment. Re
that uN2^N(t)&u!N for the time interval of our interest, an
that J is small enough so that only transitions between
ground states for different values ofN are possible. There
fore, among many possible states of the box the relev
states areuN2DN,y& ’s with uDNu!N. On the other hand
there are no bosons in the environment att,0. That is, the
environment is initially in the vacuum, which we deno
u0E&. Hence, from Eq.~68!, the initial density operator of the
total system is

r̂ total~ t !5uN,y&u0E&^0Eu^N,yu ~ t,0!. ~74!

Bosons escape from the box into the environment fort>0.
Since V@V, the boson density of the environment is ke
essentially zero, and BEC does not occur in the environm
for the time period of Eq.~69!. We can therefore take th
simple number statesunk

E ,nk8
E , . . . & of free bosons as eigen

states of the environment, wherenk denotes the number o
bosons in modek. For example, we shall writeu1k

E& to de-
note the environment state in which modek is occupied by a
single boson whereas the other modes are empty. There
the relevant states of the total system, i.e., low-lying qua
eigenstates ofĤ total, can be written as

uN2DN,y&unk
E ,nk8

E , . . . & ~ uDNu!N!, ~75!

where, sinceĤ total conserves the total number of bosons,

DN5(
k

nk
E . ~76!

D. Time evolution in a short time interval Dt

We are interested in the reduced density operator
bosons in the box fort>0:

r̂~ t ![TrE@ r̂ total~ t !#, ~77!

where TrE is the trace operation over the environment d
grees of freedom. The expectation value of any observablQ̂

in the box can be evaluated fromr̂(t) as

^Q~ t !&[ Trtotal@ r̂ total~ t !Q̂#5 Tr@ r̂~ t !Q̂#, ~78!

where Tr denotes the trace operation over the degree
freedom in the box. Equation~74! yields
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r̂~0!5uN,y&^N,yu, ~79!

^Q~0!&5^N,yuQ̂uN,y&. ~80!

Although we may evaluater̂(t) by solving a master equa
tion, we here present a different~but equivalent! method, by
which the physical meaning can be seen clearly. We be
with noting that a single action ofĤES of Eq. ~73! can only
change (N,NE) by either (21,11) or (11,21), and that
the latter change is impossible for the initial density opera
~74!. Therefore, after a short time intervalDt which satisfies
JDt!1, the state vectoruN,y&u0E& evolves into a state of the
following form:

e2 iEN,yDt/\uN,y&u0E&

1(
k

ck
(1)~Dt !e2 i (EN21,y1ek

(0))Dt/\uN21,y&u1k
E&1O~l2!,

~81!

where

ck
(1)~Dt ![

1

i\E0

Dt

M ke
i (ek

(0)
2m)t/\dt, ~82!

M k[Š1k
Ez^N21,yuĤESuN,y& z0E

‹, ~83!

m[EN,y2EN21,y . ~84!

Therefore, the reduced density operator is evaluated as

r̂~Dt !5w~0;Dt !uN,y&^N,yu

1w~1;Dt !uN21,y&^N21,yu1O~l3!, ~85!

where

w~0;Dt ![12w~1;Dt !, ~86!

w~1;Dt ![(
k

uck
(1)~Dt !u2. ~87!

Here, we have normalizedr̂(Dt) to orderl2 by Eq.~86!. We
now takeDt in such a way that

\/Ec,Dt!1/J, ~88!

whereEc is the energy range ofek
(0) in which uM ku2 is finite

and approximately constant. Then, sincek of the environ-
ment takes quasicontinuous values,w(1;Dt) becomes pro-
portional toDt:

w~1;Dt !5JDt. ~89!

To evaluateJ, we calculateuM ku2 using Eqs.~56! and~73! as

uM ku25ulE d3r f ~r !Š1k
Ez^N21,yuĉE†~r !ĴuN,y& z0E

‹u2

5N
n0

n U l

AV
E d3r f ~r !wk

E* ~r !U2

, ~90!
in

r

wherewk
E(r ) is the mode function of modek of the environ-

ment. Regarding the volume dependence,wk
E behaves as

;1/AV, whereasf is localized in the boundary region, whos
volume is denoted byv, of the box and the environmen
Therefore,

uM ku2'
n0

n
ulu2

v2

VV . ~91!

On the other hand, from Eq.~35!, an escaping boson has th
energy ofgn. The density of states of the environment at th
energy is

V
2p2\3

Am3gn

2
. ~92!

Therefore, the leakage fluxJ is estimated as

J'N
n0

n

v
V

ulu2v
\4 Am3gn5

n0ulu2v2

\4
Am3gn, ~93!

where numerical factors of order unity have been absorbe
l. We observe thatJ is reduced by the factorv/V (!1),
which means that the escape process is a ‘‘surface effe
i.e., it occurs only in the boundary region. On the other ha
J is enhanced by the factorN (@1). This enhancement is
typical to the boson condensation.

From our assumption of smallJ, the right-hand side of
Eq. ~93! should be smaller than the critical valueJcr of the
flux above which bosons in the box get excited@24#. It is
seen that this condition is satisfied whenv and/orulu is small
enough.

E. Time evolution for 0<Jt!N

We have found in the preceding subsection that the
duced density operatorr̂ evolves from the pure state~79! to
the mixed state~85! after a small time intervalDt (!1/J).
Since the latter is a classical mixture of two different stat
uN,y&^N,yu and uN21,y&^N21,yu, we can separately solv
the time evolution for each state. For each state, further t
sitions occur in the subsequent time intervals, (Dt,2Dt#,
(2Dt,3Dt#, . . . . SinceV@V, the recursion time of an es
caped boson to return to the original position is extrem
long ~except for rare events whose probability→0 as V
→`!. Therefore, as long asJ!Jcr , we can neglect any
quantum as well as classical correlations between transit
of different time intervals. This allows us to take the n
boson state,u0E&, as the initial state of the environment fo
each time interval (l Dt,(l 11)Dt#, wherel 50,1,2, . . . .
Hence, for every time interval, we may use the same form
~85!. Furthermore, we can neglect theN dependencies ofw
andJ under our assumption of Eq.~69!. Therefore,

r̂~2Dt !5w~0;Dt !$w~0;Dt !uN,y&^N,yu

1w~1;Dt !uN21,y&^N21,yu%

1w~1;Dt !$w~0;Dt !uN21,y&^N21,yu

1w~1;Dt !uN22,y&^N22,yu%
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5w~0;2Dt !uN,y&^N,yu

1w~1;2Dt !uN21,y&^N21,yu

1w~2;2Dt !uN22,y&^N22,yu, ~94!

where

w~0;2Dt ![w~0;Dt !2

5~12JDt !2, ~95!

w~1;2Dt ![w~0;Dt !w~1;Dt !1w~1;Dt !w~0;Dt !

52~12JDt !JDt, ~96!

w~2;2Dt ![w~1;Dt !w~1;Dt !

5J2~Dt !2. ~97!

The time evolution in the subsequent times can be calcul
in a similar manner. Let

t5MDt, ~98!

whereM (,N) is a positive integer. We find

r̂~ t !5 (
m50

M

w~m;t !uN2m,y&^N2m,yu, ~99!

wherew(m;t) is the binomial distribution:

w~m;t !5S M
mD ~12JDt !M2m~JDt !m. ~100!

We find from Eq. ~99! that w(m;t) is the probability of
finding N2m bosons in the box att. From the conservation
of the total number of bosons, Eq.~76!, this probability
equals the probability thatm bosons have escaped from th
box by the timet. Using Eq.~100!, we find

^N~ t !&5 Tr@ r̂~ t !N̂#5 (
m50

M

w~m;t !~N2m!5N2Jt,

~101!

^NE~ t !&5 Tr@ r̂~ t !N̂E#5 (
m50

M

w~m;t !m5J. ~102!

SinceEc in Eq. ~88! is of the order of the atomic energy, w
can takeDt extremely small such that

M@1 and M@Jt, ~103!

for a finite t that satisfies Eq.~69!. In this case, Eq.~100! can
be approximated by the Poisson distribution:

w~m;t !'K~M ,Jt!e2Jt
~Jt!m

m!
. ~104!

Here,K is the normalization factor,

1

K~M ,x!
[e2x (

m50

M
xm

m!
, ~105!
ed

which approaches unity for allx as M→`. For large but
finite M, we can easily show that

U 1

K~M ,x!
21U; e2x

A2p~M11!
S ex

M11D M11

. ~106!

Therefore, under the condition~103!, we can takeK(M ,Jt)
51 to a very good approximation, and we henceforth dropK
from Eq. ~104!. Furthermore, sincew(m,t)'0 for m@Jt,
we may extend the summation of Eq.~99! to N. We thus
obtain

r̂~ t !'e2Jt (
m50

N
~Jt!m

m!
uN2m,y&^N2m,yu

5e2Jt (
m50

N
~Jt!N2m

~N2m!!
um,y&^m,yu. ~107!

Since this final result is valid even att50 ~despite our use of
the assumptionM@1), it is valid for all t as long as

0<Jt!N and N@1. ~108!

Note that the final result~107! is quite general because all th
details of the box-environment interactionĤES have been
absorbed inJ.

The probabilityP(m,t) of finding m bosons in the box a
t is evaluated as

P~m,t !5w~N2m;t !

5e2Jt
~Jt!N2m

~N2m!!
. ~109!

We call this distribution the ‘‘shifted Poisson distribution,
because it is obtained by shifting the center of the Pois
distribution. The expectation values and variances are ev
ated as

^N~ t !&5N2Jt, ~110!

^NE~ t !&5Jt, ~111!

^dN~ t !2&5^dNE~ t !2&5Jt. ~112!

V. NUMBER VERSUS PHASE

A. Cosine and sine operators of interacting many bosons

Roughly speaking, the conjugate observable of the nu
ber is the phase. More precisely, however, physical obs
ables are not the phase itself, but the cosine and sine o
phase. Namely, any physical measurement of a phase a
ally measures the cosine or sine of the phase@20#. In the case
of a single-mode boson~i.e., a harmonic oscillator of a singl
degree of freedom!, it has been discussed that various de
nitions are possible for the cosine and sine operators@25#.
This ambiguity does not matter in our case, because we
treating the case where the number of bosons is extrem
large, whereas differences among different definitions app
only when the number of bosons is small. On the other ha
the crucial point in our case is how to select a single ‘‘co



-
fin
n

f
n

c
r o
th
-

la
on
icu
he
-

e
e

e
m

o
r-
d

au
a

asily
e of

to
boli-

e
-

tly

ry

3214 PRA 60AKIRA SHIMIZU AND JUN-ICHI INOUE
dinate’’ ~dynamical variable! with which the phase is de
fined, among a huge number of degrees of freedom. To
such a ‘‘proper coordinate’’ is generally very difficult i
many-body interacting systems.

Fortunately, we find thatb̂0 is the proper coordinate o
interacting bosons, with which we can successfully defi
thecosine and sine operators of interacting many bosonsby

cosf̂[
1

2Ab̂0
†b̂011

b̂01b̂0
†

1

2Ab̂0
†b̂011

, ~113!

sinf̂[
1

2iAb̂0
†b̂011

b̂02b̂0
†

1

2iAb̂0
†b̂011

. ~114!

These are the same forms as those of a single harmoni
cillator @25#. In our case, however, there is a huge numbe
degrees of freedom with mutual interactions. As a result,
Hamiltonian doesnot take the simple bilinear form with re
spect to b̂0, hence the motion ofb̂01b̂0

† is not that of a
harmonic-oscillator coordinate. Nevertheless, many formu
for the single-mode case are applicable if they are based
on the commutation relations of a boson operator. In part
lar, owing to Eq.~50!, we can treat any states that have t
form of (mCmuN2m,y& as if we were treating a single
mode problem.

It will turn out in the following discussions that the abov
operators give reasonable results for the quantum phas
interacting bosons.

B. Number and phase fluctuations ofzN,y‹

As we have shown in Sec. III, the ground state of a fix
number of bosonsuN,y& can be represented simply as a nu
ber state if we use a ‘‘natural coordinate’’b̂0. Note that this
state has a finite fluctuation ofâ0

†â0 due to many-body inter-

actions. Nevertheless, the total number of bosonsN̂ has a
definite value:

^N&N,y[^N,yuN̂uN,y&5N, ~115!

^dN2&N,y[^N,yudN̂2uN,y&50. ~116!

On the other hand, using the simple representation~48!, we
can easily show that

^cosf&N,y[^N,yucosf̂uN,y&50, ~117!

^sinf&N,y[^N,yusinf̂uN,y&50. ~118!

Therefore, the ground state of a fixed number of bosons d
not have a definite phase@20#, as expected from the numbe
phase uncertainty relation, Eq.~38!. It was sometimes argue
that althoughN̂ is definite the fluctuation ofâ0

†â0 might al-
low for a definite phase@26#. However, our results~117! and
~118! show explicitly that the fluctuation ofâ0

†â0 does not
help to develop a definite phase. Note that this isnot due to
our special choice of the cosine and sine operators, bec
the same conclusion is obtained also when the cosine
d

e

os-
f
e

s
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d
-

es
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sine operators ofâ0 are used instead of Eqs.~113! and~114!.
We will touch on this point again in Sec. VII.

C. Coherent state of interacting bosons

We define a coherent state of interacting bosons~SIB! by

ua,y&[e2uau2/2(
m50

`
am

Am!
um,y&, ~119!

which is labeled byy and a complex number,

a[eifAN. ~120!

The inverse transformation is

uN,y&5E
2p

p df

2p
ua,y&. ~121!

Regarding the number and phase fluctuations, we can e
show thatua,y& has the same properties as a coherent stat
a single-mode harmonic oscillator@25#. Namely,

^N&a,y[^a,yuN̂ua,y&5uau25N, ~122!

^dN2&a,y[^a,yudN̂2ua,y&5uau25N, ~123!

and, foruau25N@1,

^sinf&a,y[^a,yusinf̂ua,y&

5@121/~8uau2!1•••#sinf, ~124!

^d sin2 f&a,y[^a,yu~d sinf̂ !2ua,y&

5~1/4uau2!~12 sin2 f!1•••, ~125!

and similar results for the cosine operator. It is customary
express the results for the sine and cosine operators sym
cally as

^f&a,y'f, ~126!

^df2&a,y'1/~4uau2!51/~4N!. ~127!

Therefore, ua,y& is the minimum-uncertainty state in th
sense that it has theminimumallowable value of the number
phase uncertainty product~NPUP! @Eq. ~38!#:

^dN2&a,y^df2&a,y'1/4. ~128!

The magnitude of the number fluctuation is convenien
measured with the ‘‘Fano factor’’F, which is defined by

F[^dN2&/^N&. ~129!

For ua,y&, we find

Fa,y[
^dN2&a,y

^N&a,y
51. ~130!

Therefore, usingb̂0, we have successfully constructed a ve
special state of interacting bosons,ua,y&, whose Fano factor
is exactlyunity, and which has theminimumallowable value
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of the NPUP. This should be contrasted with Bogoliubo
ground stateua0 ,ycl&cl, for which

Fcl[
^dN2&cl

^N&cl
511

(
qÞ0

~sinhuyq
clu!4

ua0u21(
qÞ0

~sinhuyq
clu!2

.1, ~131!

and the NPUP is larger than 1/4. The CSIB should not
confused withua0 ,ycl&cl.

D. Number-phase-squeezed state of interacting bosons

We define a new stateuj,N,y& by

uj,N,y&[AK~N,uju2!e2uju2/2(
m50

N
j* (N2m)

A~N2n!!
um,y& ~132!

5AK~N,uju2!e2uju2/2(
m50

N
j* (N2m)

A~N2m!!m!
~ b̂0

†!mu0,y&,

~133!

which is labeled byy and a complex number,

j[eifuju. ~134!

We henceforth assume that

uju2!N and N@1, ~135!

which allows us to setK(N,uju2)51 to a very good approxi-
mation.

The probabilityP(m) of finding m bosons for the state
uj,N,y& obeys the shifted Poisson distribution@cf. Eq.
~109!#,

P~m!5e2uju2 uju2(N2m)

~N2m!!
. ~136!

The number fluctuation and the Fano factor are evaluate

^N&j,N,y[^j,N,yuN̂uj,N,y&5N2uju2, ~137!

^dN2&j,N,y[^j,N,yudN̂2uj,N,y&5uju2, ~138!

Fj,N,y[
^dN2&j,N,y

^N&j,N,y
5

uju2

N2uju2'
uju2

N
!1. ~139!

As compared with Eqs.~123! and~130!, we observe that the
state uj,N,y& has a very narrow distribution of the boso
number. On the other hand,uj,N,y& has a well-defined phas
@20# when

1!uju2!N. ~140!

In fact, under this condition we can easily show that

^sinf&j,N,y[^j,N,yusinf̂uj,N,y&

5@121/~8uju2!1•••#sinf, ~141!
e

as

^d sin2 f&j,N,y[^j,N,yu~d sinf̂ !2uj,N,y&

5~1/4uju2!~12 sin2 f!1•••, ~142!

and similar results for the cosine operator. As in the case
the CSIB, we may express these results symbolically as

^f&j,N,y'f, ~143!

^df2&j,N,y'1/~4uju2!. ~144!

Therefore, just asua,y& does, uj,N,y& has the minimum
value of the NPUP;

^dN2&j,N,y^df2&j,N,y'1/4 for 1!uju2!N. ~145!

Since each component of the product satisfies^dN̂2&j,N,y

!^dN̂2&a,y and ^df2&j,N,y@^df2&a,y , uj,N,y& is obtained
by ‘‘squeezing’’ ua,y& in the direction ofN̂, while keeping
the NPUP minimum.~cf. The conventional squeezed sta
has a larger NPUP@25#.! We thus calluj,N,y& the ‘‘number-
phase-squeezed state of interacting bosons~NPIB!.’’

E. Phase-randomized mixture
of number-phase-squeezed states of interacting bosons

We now take

j5eifAJt[j~ t !. ~146!

That is, uju25Jt. Then, inequalities~135! are satisfied be-
cause of our assumption~108!. We can show by explicit
calculation that Eq.~107! can be rewritten as

r̂~ t !5E
2p

p df

2p
ueifAJt,N,y&^eifAJt,N,yu. ~147!

Therefore, the boson state in the box can be viewed eithe
the shifted Poissonian mixture, Eq.~107!, of NSIBs, or as the
phase-randomized mixture~PRM!, Eq. ~147!, of NPIBs.
Both representations are simply described in terms ofb̂0. In
contrast, the samer̂(t) would be described in a very com
plicated manner in terms of bare operators.

We have thus obtaineddouble pictures~or representa-
tions!, Eqs.~107! and~147!, for thesamephysical state~see
@27# and Appendix!. According to the former picture, the
state of the box is one of NSIBs, for which the number
bosons is definite~but unknown!, whereas the phase is com
pletely indefinite. According to the latter picture, on the oth
hand, the state is one of NPIBs, for which the number
bosons has a finite fluctuation^dN2&'Jt, whereas the phas
is almost definite@20# ~but unknown!, ^df2&'1/(4Jt).
What allows these double pictures is the superposition p
ciple ~see Appendix!.

In addition to Eqs.~107! and~147!, there are many othe
ways to expressr̂(t) as different mixtures. Among them, Eq
~107! is the form in whicheachelement of the mixture has
the smallest value of the number fluctuation, whereas in
~147! eachelement of the mixture has the smallest value
the phase fluctuation. Therefore, the latter representatio
particularly convenient for discussing physical propert
that are related to the phase, as will be shown in Secs. V
and VII.
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F. Origin of the direction of the time evolution

As the time evolves, the number of bosons decreases

^N~ t !&5N2Jt. ~148!

As a result, the energy of the bosons in the box decrea
with t. For example, for each element of Eq.~147!,

^eifAJt,N,yuĤueifAJt,N,y&,^N,yuĤuN,y& for t.0.
~149!

However, we note that this energy difference is just a c
sequence of the difference in̂N&. Namely, uN,y& and the
NPIB have the same energy if they have the same valu
^N&:

^eifAJt,N1Jt,yuĤueifAJt,N1Jt,y&'^N,yuĤuN,y&.
~150!

We can therefore conclude that the direction of the time e
lution, from uN,y& to the PRM ofuj,N,y&, is not determined
by an energy difference. Hence, it must be due to differe
in the nature of the wave functions. A study of such a natu
however, needs many pages of analysis, which is beyond
scope of this paper, and thus we plan to describe it in fut
@28#.

VI. ACTION OF MEASUREMENT OR ITS EQUIVALENCE

In the preceding section, we have obtained the dou
pictures, Eqs.~107! and ~147!. Depending on the physica
situation, either picture is convenient~see Appendix!. To ex-
plain this point, we discuss two examples in this section.

A. Number measurement

Suppose that one measuresN̂ of the boson system whos
density operator is given by Eq.~107!, or, equivalently, by
Eq. ~147!. In this case, the former expression is convenie
In fact, if the measurement error

dNerr,A^dN~ t !2&5AJt, ~151!

and if the measurement is of the first kind@29#, then the
action of the measurement is to narrow the number distr
tion, to as small asdNerr, of the right-hand side of Eq.~107!.
That is, the density operator immediately after the meas
ment is generally given by@30#

r̂ N̄~ t ![ (
m50

N

W~m2N̄!um,y&^m,yu. ~152!

Here,N̄ is the value off obtained by the measurement, a
W is a smooth function which has the following propertie

W~m2N̄!>0, ~153!

W~m2N̄!'0 for um2N̄u*dNerr, ~154!

(
m50

N

W~m2N̄!51. ~155!
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The detailed form ofW depends on the detailed structures
the measuring apparatus, and thus is of no interest here. I
ideal case wheredNerr→0, W becomes Kronecker’s delta
and

r̂ N̄~ t !→uN̄,y&^N̄,yu. ~156!

On the other hand, if the measurement is rather inaccura
such a way that

dNerr.A^dN~ t !2&5AJt, ~157!

then almost no change ofr̂ is induced by the measuremen
if it is of the first kind @30#.

B. Phase measurement

Suppose that one measuresf of the boson system whos
density operator is Eq.~107!, or, equivalently, Eq.~147!. In
this case, the latter representation is convenient. In fact, if
measurement error

dferr.A^df2&j,N,y5
1

2uj~ t !u
5

1

2AJt
, ~158!

and if the measurement is performed in such a way that
backaction of the measurement is minimum, then the ac
of the measurement is just to find~or, get to know! the
‘‘true’’ value of f, to the accuracy ofdferr, among many
possibilities in the right-hand side of Eq.~147!. Therefore,
the density operator just after the measurement is gene
given by @30#

r̂ f̄~ t ![E
2p

p df

2p
D~f2f̄ !ueifAJt,N,y&^eifAJt,N,yu.

~159!

Here,f̄ is the value off obtained by the measurement, an
D(f2f̄) is a smooth function which has the followin
properties:

D~f2f̄ !>0, ~160!

D~f2f̄ !'0 for uf2f̄u*dferr, ~161!

E
2p

p df

2p
D~f2f̄ !51. ~162!

The detailed form ofD depends on the detailed structures
the measuring apparatus, and thus is of no interest here

On the other hand, if the measurement is very accurat
such a way that

dferr,A^df2&j,N,y5
1

2uj~ t !u
5

1

2AJt
, ~163!

then r̂ will ‘‘collapse’’ into another state whose phase flu
tuation is less than̂df2&j,N,y . However, such an accurat
measurement is practically difficult whenJt@1. Therefore,
in most experiments we may take Eq.~159! for the density
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operator after the measurement, if the measurement is
formed in such a way that the backaction of the measurem
is minimum.

For example, suppose that one prepares bosonsindepen-
dently in two boxes~Fig. 2!, where the number of bosons i
each box is fixed fort,0. At t50 a small hole is made in
each box, and small fluxes of bosons escape from the bo
Sincer̂ of each box evolves as Eq.~147!, it is clear that these
fluxes can interfereat each experimental run~as in the cases
of noninteracting bosons@11–13# and two-mode boson
@23#! as the interference between two NPIBs of two box
From the interference pattern, one can measure the rela
phasef̄ of two condensates. After the measurement,r̂ of
each box would take the form of Eq.~159!. Such an experi-
ment would be possible by modifying the experiment of R
@31# in such a way thatJ becomes small enough.

VII. ORDER PARAMETER

The order parameter of BEC can be defined in vario
ways. For the ground stateua,ycl&cl of the semiclassica
Hamiltonian Ĥcl, different definitions give the same resu
However, this is not the case foruN,y& and uj,N,y&. We
explore these points in this section.

A. Off-diagonal long-range order

We first consider the two-point correlation function d
fined by

Y~r1 ,r2![ Tr@ r̂ĉ†~r1!ĉ~r2!#. ~164!

The system is said to possess the off-diagonal long-ra
order ~ODLRO! if @32–34#

lim
ur12r2u→`

Y~r1 ,r2!Þ0. ~165!

This limiting value cannot be finite without the condensati
of a macroscopic number of bosons.@Without the condensa
tion, we simply have limur12r2u→`Y(r1 ,r2)50 for the
ground state and for any finite excitations.# In this sense, Eq
~165! is a criterion of the condensation.

If the system possesses the ODLRO, it is customary
define the order parameterJ by the asymptotic form ofY as

Y~r1 ,r2!;J* ~r1!J~r2!. ~166!

FIG. 2. Bosons are confined independently in two boxes. T
number of bosons in each box is fixed fort,0. If holes are made in
the boxes att.0, then the leakage fluxes are induced, exhibit
interference.
er-
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es.
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According to this definition, we obtain the same results
all of uN,y&, uj,N,y&, and ua,y&, wherej5eifAJt, Jt!N,
anda5eifAN. Namely, using Eqs.~56! and ~63!, we find

lim
ur12r2u→`

Y~r1 ,r2!5n0 , hence J5An0eiw, ~167!

for all of these states. Therefore, neither the ODLRO norJ
is able to distinguish between these states.

B. Definition as a matrix element

As an order parameter of the state for whichN is exactly
fixed, Ref.@15# uses the ‘‘wave function of the condensate
J, as defined by Eq.~53!. It is clear that this definition is jus
a special case of that of the preceding subsection. In fact
uN,y& Eq. ~53! yields

J5^N21,yuĉuN,y&5An0eiw, ~168!

in agreement with Eq.~167!.

C. Definition as the expectation value ofĉ

Another definition of the order parameter is the expec
tion value ofĉ, which we denote byC;

C~r ![^ĉ~r !&. ~169!

According to this definition, the ground stateuN,y& of a fixed
number of bosons does not have a finite order paramete

C5^N,yuĉ~r !uN,y&50. ~170!

This result is rather trivial becauseĉ altersN exactly by one.
On the other hand, it was sometimes conjectured in the
erature@26# that the expectation value of the bare operatorâ0

might be finite^N,yuâ0uN,y&Þ0 in the presence of many
body interactions because the number of bosons in the
state ofk50 fluctuates due to the many-body scattering
However, this conjecture is wrong because by integrat
Eq. ~170! over r we obtain

^N,yuâ0uN,y&50. ~171!

That is, althoughâ0
†â0 fluctuates in the stateuN,y& it does not

lead to a finitê N,yuâ0uN,y&.
In our gedanken experiment,r̂(t) evolves as Eq.~107!,

or, equivalently, as Eq.~147!. For this mixed ensemble,

C5 Tr@ r̂~ t !ĉ#50. ~172!

This is theaverage over all elementsin the mixed ensemble
and corresponds to theaverage over many experiment
runs. On the other hand,C of each element, which corre-
sponds toa possible result for a single experimental run, is
different between the two expressions, Eqs.~107! and~147!.
That is, for each element of the mixtures,C50 for Eq.~107!
because of Eq.~170!, whereas for Eq.~147!

C5^eifAJt,N,yuĉueifAJt,N,y& ~173!

e
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can be finite. As discussed in Secs. V D and V E, Eq.~147!
is the form in whicheach element of the mixture has th
smallest value of the phase fluctuation. This indicates
each element of the mixture possesses the most definite~non-
fluctuating! value of C when we take the representatio
~147!, among many representations of the samer̂(t). We are
most interested in this case, becauseC is usually taken as a
macroscopic order parameter, which has a definite va
obeying the Gross-Pitaevskii equation.

Figure 3 plotsuCu of Eq. ~173! as a function ofJt ~the
average number of escaped bosons!. We find thatuCu grows
very rapidly, until it attains a constant value@35#,

C5^eifAJt,N,yuĉueifAJt,N,y&→ei (f1w)An0 for Jt*2.
~174!

This value equalsC of ua,y& with a5eifAN;

C5^a,yuĉua,y&5eiwAn0

nV
a5ei (f1w)An0. ~175!

Note here thatuCu of ua,y& is renormalized by the facto
AuZu5An0 /n because of the many-body interactions.

We have also plotted̂(sinf̂)2& of the f50 element of
Eq. ~147! in Fig. 3. This is a measure of the phase fluctuat
of the f50 element. Because of the rotational symme
with respect tof, we can regard it as a measure of the ph
fluctuation of every element. We find that^(sinf̂)2& de-
creases rapidly asJt is increased, until it behaves as

^~sinf̂ !2&'1/~4Jt!, ~176!

for Jt*3. Therefore,after the leakage of only two or thre
bosons,ueifAJt,N,y& acquires the full, stable, and definit
(nonfluctuating) values ofC andf, and thegauge symmetry
is brokenin this sense. One might expect that^dN2& of the
order of ^N& would be necessary to achieve such stableC
and f becausê dN2&5^N& for a CSIB. Our result shows
that this expectation is wrong, becauseC and f already
become stable whenJt;2, for which ^dN2&5Jt!^N&.
Practically, it seems rather difficult to fixN to such high

FIG. 3. Left scale:̂ (sinf̂)2& of the f50 element of Eq.~147!.
The dashed line represents 1/(4Jt). Right scale:uCu defined by Eq.

~173!. The dotted line denotesuCu5An0. Both ^(sinf̂)2& and uCu
are plotted againstJt, the number of escaped bosons.
at

e

n
y
e

accuracy thatdN&2. In such a case,dN would be larger
than 2 from the beginning, and each element of the mixt
has the full and stable values ofC and f from the begin-
ning.

We finally make a remark on the evolution at later time
whereas we have only considered the early time stage
which Jt!N. It is clear that the system eventually a
proaches the equilibrium state. However, a question is, w
is the state after the early stage, but before the sys
reaches equilibrium? It is expected that the state would
some coherent state. We can show that this is indeed the
@28#: ast→`, r̂ eventually approaches the PRM ofua,y&, in
which uau25^N(t)& (,N) @35# andy is given by Eqs.~22!,
~23!, and~33! with n5^N(t)&/V @35#. To show this, we must
extend the theory of Sec. IV. This is beyond the scope of
paper, and thus we plan to describe it in the future@28#.

The summary of the present paper has been given
Sec. I.
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APPENDIX

The simplest example of the double~or more! pictures is
a mixed state of a single spin. If the quantum state of a sin
spin-1/2 system is either the up-spin stateu1z& or the down-
spin stateu2z&, and if we have no information on which
state is realized~in other words, thez component of the spin
is completely undefined!, then the density matrix is

r̂5 1
2 u1z&^1zu1 1

2 u2z&^2zu. ~A1!

On the other hand, if the direction of the spin is either in t
1x direction u1x& or in the 2x direction u2x&, and if we
have no information on which state is realized, then the d
sity matrix is

r̂5 1
2 u1x&^1xu1 1

2 u2x&^2xu. ~A2!

It is easy to verify that Eqs.~A1! and ~A2! are identical.
Therefore, the same density matrix can be interpreted in
ways: thez component of the spin is definite, but unknow
@Eq. ~A1!#; the x component of the spin is definite, but un
known @Eq. ~A2!#. Moreover,r̂ has many other representa
tions, e.g.,

r̂5 1
2 u1y&^1yu1 1

2 u2y&^2yu. ~A3!

As demonstrated by this simple example, a mixed state
quantum system generally has many representations, h
has many interpretations or pictures.~This is a result of the
superposition principle.! Some picture is convenient depen
ing on the physical situation. For example, Eq.~A2! is most
convenient to analyze the case where thex component of the
spin is measured.
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