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We study the nonequilibrium time evolution of the Bose-Einstein condensate of interacting bosons confined
in a leaky box, when its number fluctuation is initially=0) suppressed. We take account of quantum
fluctuations of all modes, including=0, of the bosons. As the wave function of the ground state that has a
definite numbeN of interacting bosons, we use a variational foijy), which is obtained by operating a
unitary operatoe'®® on the number state of free bosons. Usiifgf¥), we identify a “natural coordinate’,
of the interacting bosons, by which many physical properties can be simply describe¢iN;Jhecan be
represented simply as a number statdgfwe thus call it the “number state of interacting bosor®'SIB).

To simulate real systems, for which if one fixNsatt=0 N will fluctuate at later times because of a finite
probability of exchanging bosons between the box and the environment, we evaluate the time evolution of the
reduced density operatgf)l(t) of the bosons in the box as a function of the leakage JIWWe concentrate on

the most interesting and nontrivial time stage, i.e.,@hdy time stagdor which Jt<N, much earlier than the

time when the system approaches the equilibrium state. It is shown that the time evolution can be described
very simply as the evolution from a single NSIB &t 0, into a classical mixture, with a time-dependent
distribution, of NSIBs of various values & att>0. Using 60, we successfully define the cosine and sine
operatorsfor interacting many bosonsgy which we can analyze the phase fluctuation in a fully quantum-
mechanical manner. We define a new stdté\,y) called the “number-phase-squeezed state of interacting
bosons” (NPIB), which is characterized by a complex parameieit is shown thatp(t) for t>0 can be
rewritten as the phase-randomized mixtG@PRM) of NPIBs. Among many possible representations (),

this representation is particularly convenient for analyzing the phase fluctuations and the order parameter. We
study the order parameter according to a few typical definitions, as well as their time evolution. It is shown that
the off-diagonal long-range ordd©ODLRO) does not distinguish the NSIB and NPIB. Hence, the order
parameter=E defined from ODLRO does not distinguish them, either. On the other hand, the other order
parametetV, defined as the expectation value of the boson operathas different values among these states.

In particular, for each element of the PRM of NPIBs, we show thatvolves from zero to a finite value very
quickly. Namely, after the leakage of only two or three bosons, each element acquires a full, stable, and definite
(nonfluctuating value of V. [S1050-2947@9)05810-3

PACS numbgs): 03.75.Fi, 05.30.Jp, 05.70.Fh, 05.70.Ln

I. INTRODUCTION AND SUMMARY =3-0.1%. This means that in such systems if one fiXes
with accuracy better than 3-0.1%, thésN?)<(N), thus
Bose-Einstein condensatigBEC) has been observed in the statd aq,y®)® is forbidden, and another state should be
various system§l], including liquid helium[2], excitons in  realized. In most real systems, there is a finite probability of
photoexcited semiconductor3], and atoms trapped by laser exchanging bosons between the box and the environment.
beams[4—6]. Although BEC was originally discussed for Hence, if one fixeN at some timeN will fluctuate at later
free bosons, a condensate of free bosons does not have simes. Namely, the boson state undergoes a nonequilibrium
perfluidity [1], hence many-body interactions are essential taime evolution when its number fluctuation is initially sup-
interesting behaviors of condensates. The condensed stategressed. The purpose of this paper is to investigate the time
interacting bosons in a box of finite volunweis convention-  evolution of the interacting bosons in such a case, and to
ally taken as the state in the Bogoliubov approximationdiscuss how an order parameter is developed.
which we denote byag,y®)® [see Refs[7,8] and Eq.(20) We first review and discuss the case where the box is
below]. In this state, the boson numbirhas finite fluctua- closed and the boson numbgiis exactly fixed(Sec. ). The
tion, whose magnitude i65N?)>(N) [Eq. (29)]. This fluc-  ground-state wave function of such a case may be obtained
tuation is non-negligible in small systems, such as heliunby the superposition of Bogoliubov’s solutida,,y®)* over
atoms in a microbubblg9] and laser-trapped atonjd—6],  various values of the phase af, [Eq. (30)]. The resulting
where (N) is typically 1G-1C°, and thus (6N%)/(N)  state|N,y*)® has the same energy &s,,y*)® because of
the degeneracy with respect to the phasef(This degen-
eracy leads to symmetry breakihgdowever, such an ex-
*Electronic address: shmz@ASone.c.u-tokyo.ac.jp pression is not convenient for the analysis of physical prop-
TElectronic address: inoue@ASone.c.u-tokyo.ac.jp erties. To find the ground state in a form that is convenient
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for analyzing physical properties, we derive an effectiveeyaluate the time evolution qi(t) by a method which is
HamiltonianH [Eq. (9)], which includes quantum fluctua- equivalgnt to .solving the master equation. Our method gi\_/es
tions of all modes includingg=0, from the full Hamiltonian & physical picture more clearly than the master-equation

Hg of interacting bosons. Here, we neglect effects due tgnethod. We obtairp(t) in a general form in which all the
spatial inhomogeneity of the boson states in the box, becaustetails of the box-environment interactidh™> have been
we are not interested in such effects here, and also becauggsorbed in the magnitude of the leakage fluxVe show
we expect that the main physics of the nonequilibrium evo-thaf the time evolution can be described very simply in terms
lution of our interest would not be affected by such effects. Af bo, as the evolution from a single NSIB &0, into a

renormalization constartt, appears i Although Z, for- classical mixture, with a time dependent distribution, of

. . . NSIBs of various values ol att>0 [Eq. (107)].
mally diverges[Eq. (7)], the divergence is successfully We then discuss the phageas avaﬂable approximately

renormalized, i.e., the final reAsuIts are independeit cdind conjugate to the numbeX (Sec. V. To treat the quantum
finite. As the ground state dfi, we use a variational form phase properly, we consider the sine and cosine operators,
IN,y), which is similar to that of Girardeau and Arnowitt sTrB and &ﬁ). It is generally very difficult to define such
[10]. This form takes a compact forfiEq. (31)]: it is ob-  operators for interacting many-particle systems. Fortunately,
tained by operating a simple unitary opera&?¥) on the  however, in terms of the natural coordindig we success-

N-particle state of free bosons, whe@dy) is a simple bi-  fylly define sinp and cos for interacting bosons, using
quadratic function of the bare operatpEy. (32)]. This state  which we can analyze the phase property in a fully quantum-
has the same energy hg,,y*), or, equivalently|N,y*)®.  mechanical manner. We define a “coherent state of interact-
(Precisely speaking, they have the same energy density in theg bosons”(CSIB) [Eq. (119)], which, unlike Bogoliubov’s
macroscopic limit, i.e., wheW—co while keeping the den- ground statéa,,y*), exactlyhas the minimum value of the
sity n finite.) number-phase uncertainty prodyég. (128)]. We also de-
Using the unitary operatoe’®®), we then identify a fine a new statg£,N,y) [Eq. (133)], which we call the

“natural coordinate”BO[Eq.(47)]ofthe interacting bosons, “number-phase-squeezed state of interacting bosons”

; . . - - NPIB), which has a smaller phase fluctuation than the CSIB,
by which many physical properties can be simply descrlbec\ho”e keeping the number-phase uncertainty product mini-

(Sec. ll)). Unlike the quasiparticle operators obtained by the } ~
mum [Eqg. (145]. We point out thatp(t) for t>0 can be

Bogoliubov transformationp, is a nonlinear function of represented as the phase-randomized mixt®BM) of

bare operators. Moreover, the Hamiltoniannist diagonal . LA .

ith b Such i h d NPIBs. Among many possible representationsp(ff), this
with respect ta,. Such a nonlinear operator, however, de- e resentation is particularly convenient for analyzing the
scribes the physics very simply. For examl,y) is sim-  phase fluctuations and the order parameter.
ply represented as a number statebgf We thus call|N,y) We also discuss the action of the measureméntstheir

the “number state of interacting bosongNSIB). We can  equivalentsof N and of4 (Sec. V). The forms ofp(t) after

also define, throughb,, the cosine and sine operators for such measurements are discussed. As an example of the
interacting bosongsee below. Moreover, usingdo, we de- phase measurement, we discuss an interference experiment
compose the boson field into two parts[Eq. (52)]: one of two condensates which are prepared independently in two

beh lous| d th her | | boxes. It was already established fawninteractingbosons
ehaves anomalously as—c and the other is a normal a1 the interference pattern is developed éach experi-

part. In the decomposition, the nonunityZ(<1) renormal-  mental run(although the interference disappears in dher-
ization constanZ (which should not be confused with tg  age over many runs[11-13. Using our formula for inter-
appearing in the Hamiltonians correctly obtained. This de- acting bosons, we show that the same conclusion is drawn
composition formula turns out to be extremely useful in theyery clearly and naturally fointeractingbosons.
followlng analyses. o ) We finally consider the order parameter according to a
Using these results, we study the nonequilibrium timefey typical definitions, as well as their time evoluti¢8ec.
evolution of interacting bosons in a leaky bec. I\). The VIl). We show that the off-diagonal long-range order
time evolution is induced if one fixed at some timgthus (ODLRO) does not distinguish NSIB, NPIB, and CSIB.
the boson state at that time is the NBIBecause in most real pence, the order paramet& defined from ODLRO[EQ.
systems there is a finite probability of exchanging bosong166)] does not distinguish them either. On the other hand,
between the box and the environment, heNaeill fluctuate  the other order parametdr, defined as the expectation value

ate(le;tr?li;m:;.e\:YrieSr:Tl,JAl?t:otmh:es t?r:[]éagogngycgmeﬁ:ggé"ng of the boson operatoff;, has different values among these
gctl N bosonps in a bé)x of volumy'. and att=0 a small states. In particular, for each element of the PRM of NPIBs,
y ’ — we show that¥ evolves from zero to a finite value very

hale is made in the box, so that a small leakage fuk the uickly: After the leakage of only two or three bosons, each

bosong IS mdyced. We concentrate on th? anaIyS|_s of thglement acquires a full, stable, and defiri@nfluctuating
most interesting and nontrivial time stage; tharly time value of ¥

stagefor which Jt<N, because it is clear that at later times

the system approaches the equilibrium state. We are inter- Il. PRELIMINARIES
ested in the reduced density operator of the bosons in the S
box; ;)(I)ETFE[;)tOtaI(t)], Where;)mta'(t) denotes the density A. Phase transitions in finite systems

operator of the total system, andcTihe trace operation over We consider the phase transition of interacting bosons
the environment's degrees of freedom. We successfullgonfined in a large, buinite box of volumeV. Phase tran-
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sitions are usually discussed in systems withirdimite vol- In such a case, BEC occurs and typical matrix elements of

ume (or, theV— e limit is taken at the end of the calcula- 3, ég, andN are huge, whereas those af anda,. (with
tion), because infinite degrees of freedom are necessary i00) are small. Taking up to the second-order terms in
the relevant energy scale_fstrlct tran_S|t|ons_[14]. In such a these small quantities, and using the identify= 5350
case, we must select a single physical Hilbert space among agn ) ) e
many possibilities, which selection corresponds to a strict™ >k+02k, We obtain the effective HamiltoniaH in the
phase transition. However, phase transitions do occur even fllowing form:

systems of finiteV in the sense that a single phase lasts e L
longer than the time of observation if its linear dimension ~ ~pn
exceeds the correlation length at the temperature of interesﬁ_g(1+zg)ﬁ_g(l+zg)ﬁaga°
[14]. Hence, it is physically interesting and important to ex-
plore phase transitions in finite systems. Because of the fi-
niteness olV (and the fact that the interaction potentidlis >
well behaved, von Neumann’s uniqueness theorem can be

applied. This allows us to develop a theory in a unique Hil- (5)
bert space. However, sind&is large, some quantities, which 0) . 0)_ 2,2
become anomalous in the limit ¥ due to a strict phase Here, e’ denotes the free-particle energy, =h°k"/2m,
transition, behave quasianomalously. In later sections, wandg is an effective interaction constant defined by
shall identify such a quasianomalous operator, and discuss
how an order parameter is developed.

aja,+

O~ ~ — nin
2030, aja’ ,+H.c.|.
k#0

N
&+oy 2V

k#0

4rhila
e

g= (6)

B. Effective Hamiltonian ] ) ) ]

L ) ___Here, a is the scattering length, and is the first-order
We start from the standard Hamiltonian for interacting«enormalization constant” for the scattering amplitude

bosons confined in a large, but finite box of voluivie [15]:
HB=J dr W(r)( - ﬁ—zvz) o(r) g ¢ 1
\% 2m ZgE W go @ (7)
1 - - A A
3 3pr T Trer et ’
+§fvd rfvd PPV =r)g(r)p(r). The formal divergence of the sum in E{) does not matter

because the final results are independenZpf15], hence
(1) the renormalization is successful. We have assumed that

Here, we neglect a confining potential of the box because in O<nad<1 ®)
the present work we are not interested in its effects such as
the spatial inhomogeneity of the boson states in the box, an

also because we expect that the main physics of the nonequly irmed by explicit calculations that the term{g(1

librium evolution of our interest would not be affected by nn , L -
such effects(Mathematically, our model under the periodic ~Z¢)/2V18020 In Eq.(5) gives only negligible contributions

boundary condition assumes bosons confined in a thred? the following analysis. We thus drop it henceforth:
dimensional torug. The r dependence of the boson field -

#(r) (in the Schrdinger pictur¢ can be expanded in terms f =g(1+Zg)N—+ 2
of plane waves as 2V (%o

Ander which the approximatiofig~H is good. We have

N~ a
O+ 9y |afa,

ik-r
EPUS. '

P(r)= Naﬁgo 7 2

wherea, anda/ are called creation and annihilation opera-

tors, respectively, of bare bosons. The total number o

. 9

9.~ Stat
——apd, a,a_,+H.c.
2V 0 Ogo k k

Since thisH commutes withN, we can in principle find its
Figenstates for whicl is exactly fixed. In each subspace of

bosons is given by fixed N, H is equivalent to
< 3 )3 ~ta H(N)E}g(lJrZ INV+ > elala
N= vd r (r)w(r)=; agay .- (3 2 g ) KK
We assume zero temperature, and consider the case where + %éoéogo aja’ +H.c.|, (10)

the interaction is weak and repulsiyEqg. (8) below], and
where the boson densityis finite (hence, since&/ is large,
N>1): where

n=(N)/V>0. (4) =6 +gn. (1D)
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Note that if we regarded, in H(N) as a classical complex 1 nin
number[16] larg,y)'= expl | apad— quo yi*ala®,| —H.c.|[0),
A : 20
a0—>e|¢ NoE g, (12) ( )
. where
anda] as « , we would then obtain the “semiclassical” .
HamiltonianH® as yg=lygle 2, (21
A9=g(14Znvt S, ala o /St €+ 9N
> g PR L coshyg| = 5e . (22)
q
2 &> alal, +H (13
SO’ 2, aaltHel, gn

sinilyg|= (23

\/26q( €+ eéo)-i-gn) .
where we have replaced, with N in the last parentheses
because the replacement just gives correction which is Oﬁ-lere,eq is the quasiparticle energy,
higher order ing. This Hamiltonian can be diagonalized ex-
actly (see, e.g., Refl15] in which ¢=0). We shall utilize eqzx/eq@(eq(ﬁbr 2gn), (24)
this fact later to find the ground state Kif

whose dispersion is linear fm(qo)<gn:

C. Known results for noninteracting bosons

Wheng=0, the ground state dfee bosons whose num- €4~ /@|q|_ (25)
ber N is fixed is simply a number state, m

1. The ground-state energy is calculated 5]
IN)=——=(ag)"|0), (14)
NI g 1 128 /na’
and:EgnN 1+l— — (26)
where|0) denotes the vacuum of the bare operators; ’ ° m
a,/0)=0 forallk. 15 1
k| > ( ) :EgnN+O(gz'5)- (27)
The energy ofN),
2 . cl
E= Neg°)=0, (16 The absence of th©(g-) term in E, ,c Mmeans that the large

(formally divergent becauseZ,—) positive energy

is degenerate with respect kb Hence, any superposition of 9ZgnN/2 of '_:|C' is canceled by a large negative term arising
IN) is also a ground state. For example, the coherent statefrom theA pair correlations. The expectation value and vari-
ance ofN for |aq,y®)® are evaluated as

*° N
a Ee—‘a‘2/22 a_ N :e_‘a‘zlzeaég 0 , (17)
= W o )N+ 3, (sintys)? 29

where a=€'?|/N, is also a ground state that has the same

expectation value ol as|N). On the other handg) has a el /anel g
ON%)T=(N)“'+ sin .
(NYE=(N)+ 3 (sintiyg])

finite fluctuation ofN, (29

(5N2>E((N—<N>)2):|a|2=<N), (18) E. Ground state of a fixed number of bosons

In analogy to Eq(19), it is possible to construct an ap-

whereas|N) has a definiteN. The inverse transformation proximate ground state ¢1(N) from |ag,y®)°' as

from |a) to [N) can be accomplished as
T d¢
7 d cl CIEf clycl
= [ ol 19 INYDT= ] 2l Y @0

whereN=(N)¢, Eq.(28). We can obtain an explicit form of
D. Known results for H¢ IN,y*y¢ in the form of an infinite series expansion, by in-
serting Eq.(20) into the right-hand side of E¢30), expand-
- ~t ) i ing the exponential function, and performing tieintegral.
regarda, anda, as cIasswaAI numbera, (=e'*\No) and However, such an expression is not convenient for the analy-
a} , respectively, we can uge® as the Hamiltonian, and its  sis of physical properties. Note that in many-particle physics,
ground state was given by Bogoliubov [ds7,8 it is generally difficult to evaluate physical properties even if

Neither|N) nor|a) is an eigenstate whegr>0. If we can
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the wave function is known. It is therefore essential to findhence|N,y) is an(approximate ground state ofi:

the ground state in the form that is convenient for analyzing

physical properties. HIN,y)=H(N)|N,y). (37)
Several formulations were developed for the condensation

of interacting bosons with a fixeN. Lifshitz and Pitaevskii Note also thatN,y) is exactly normalized to unity because

[15] developed dormal discussion for the case of fixed ~ €C¥ in Eq. (31) is a unitary transformatiorialthough it

However, they did not trea, as an operator, hendé was  Pecomes nonunitary in the limit f— o).

~ chcl
not conserved. For examplb;g|m,N> (in their notationg did ) We shogld make a rctlamark here. In the casgab®)
not have exacthN+1 bosons. To treat interacting bosons discussed in Sec. II D& o becomes low enough only for
with fixed N more accurately, one has to include quantumthe specific choice of the phase yff [Eq. (21)]. This phase
fluctuations of all modegincluding k=0), by treatingéo as relation is sometimes called the “phase lockinf7]. From

an operator. Such treatment was developed, for example, ﬁ(?? V_'eWpr?'”t'”'t IS jor;et!rnﬁs arﬁlU@E’lg], that “having a
Girardeau and Arnowitf10], Gardiner[17], and Castin and %€ inite phase™ and the “phase locking™ are necessary (o
Dum [18]. A variational form was proposed in Ré.0] for atheve_a low energy. However, such_a statement is rather
the wavefunction of the ground state. The variational formm'SIead'ng: In our case, the pha}se locking corresponds to the
takes account ofour-particle correlations in an elaborate fact thatyy’s are real and positive. On the other hand, our

manner, and is normalized exactly. On the other hand, i@round statefN,y) has no fluctuation irN, hencehas no
Refs.[17,18 no explicit form was derived for the ground- definite phas¢20] because of the number-phase uncertainty

state wave functionThese references are more interested inf €/ation,
excited states and the spatially inhomogeneous case, rather SN2V 52 =1/4 38
than the ground-state wave functipiWe here use a varia- (ONT)(o¢7%)=1/4. 38)

tional form, whjch is similar to that of Ref(10], as the Nevertheless, the energy [M,y) is as low aleyyd_ That is,
ground state oH(N); “having a definite phase” isot necessary to achieve the
ground-state energy, and thus the term “phase locking”
- 1 . should be taken carefully.
N,y)=e'®"—(al)N0). (31)
F. Ground state of N—AN bosons

Here,G(y) is the Hermite operator defined by The ground state dfl— AN bosons is given by Eq$31)
and(32) in which N is all replaced withN—AN. However,

é(y)z ﬁégég;o yqéqé—q+ H.c., (32) we are interested in the case whésee Sec. 1Y
|AN|<N. (39
wherey={y,} are a set of variational parameters, which are .
taken as In this caseG(y) andy (which are functions of the density
of bosong of N— AN bosons are almost identical to those of
Vo= |y§'|. (33) N bosons becaus&\N— AN)/V~N/V=n. Therefore, we can

. simplify the calculation by using the sar®y) andy for all
Using the well-known formula for arbitrary operatohsand ~ AN. That is, we take

Bl

. 1 -
R T IN—AN,y)=e'®0) ———=(a)N"2N0), (40
eABe‘A=B+[A,B]+E[A,[A,B]H..., (34) (N—AN)!
where G(y) andy are those ofN bosons. Despite the ap-
proximation, this state is exactly normalized and has exactly
N—AN bosons;

we find from Eqgs.(31) and(32) that

A 1 )
Eny=(NYRIN.y) =3 gnN+o(g), 39 NIN—AN,y)=(N—AN)[N—AN,y). (41)
where 0(g?) denotes terms which tend to zero gs-0,
faster thang?. This demonstrates that the larg®rmally
divergent becaus&y— =) positive energygZynN/2 in A. Nonlinear Bogoliubov transformation
H(N) is _canceled by a large negative term arising from the  gjnce we assume thitis finite, eV is a unitary opera-
four-particle correlations of the state of E¢31). Moreover, ., (which, however, becomes nonunitary in the limit\6f

we cgn also show that in the macroscopic li cl 6o while — ). Utilizing this fact, we define new boson operatbgs
keepingn constan), Ey, becomes as low aE yel of Eq.

(26). Therefore, the form of Eq31) is a good apbroximation ) )
to the ground state. Note thpt,y) is an eigenstate dfi: b,=eCMae 16V, (42)

IIl. NATURAL COORDINATE

N|N,y)=NI|N,y), (36)  This operator satisfies the same commutation relatioag as
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b. bi1=s... [b,.B.1=[b bi1=0. 43 be linear inN, in contradiction to Eq(35), which shows
[p:Dg]=0pq.  [Pp.Pal=[bp.bg] “3 Eny*N? (recall thatn=N/V).
Note that these relations are exact, in contrast to the operator The usefulness db, is strongly suggested by Eqei8)
b, (k#0) of Ref. [17]. Owing to the exact commutation and(50). We will show in the following discussions that this

relations, we can define the vacuumigfs by is indeed the case.
by/0y)=0 for allk. (44) B. Decomposition ofds
From Egs.(15), (32), and(42), we have[21] Some matrix elements df, become anomalously large,
. among the groundand excitedl states of differeniN. For
|0y)=€'®M|0). (450  example,
The transformation(42) somewhat resembles the Bogo- (N—1y|by|N,y)=VN=nV. (51)

liubov transformation which diagonalizét [15]. However, L _ o _ .
in contrast to Bogoliubov’s quasiparticléshose total num-  This indicates that in th&/—oo limit (while keeping the
ber differs fromN as an operatgythe total number operator densityn finite) b, does not remain an annihilation operator

B ; g A —0n- of the physical Hilbert space, signaling that a strict phase
of by’s is identical to that ofy’s becaus¢N, G(y)]=0; transition should occur ag—oe. Since this anomaly should

- BB & have important effects even for a finkg it is appropriate to
; bib=e=Ne =N. (46) separateh, from the other terms ofs. That is, we decom-
pose the boson field in a finite system[at Eqg.(2)]

This property is very useful in the following analyses. On the
other hand, the transformatio@d?2) is much more compli- - _Zl/zA ~,
cated than the Bogoliubov transformation: The latter is a ‘/’_Wb‘ﬁ"b ' (52)
linear transformation connecting the bare operators with
quasiparticle operators, whereas the former igoalinear  \where z is a complex renormalization constant. Since we
transformation between thia bare operators and the new b?fave specified nothing abotit at this stage, this decompo-
son operators. For example, defined by sition is always possible and is arbitrary. Following Ref.

BOEe‘é‘(V)éoe*ié(y) @ [15], we define the “wave function of the condensatg”by

. . E=(N—1y[¢|N,y). (53
is a rather complicated, nonlinear functionafs anda;’s < ANy
(of variousk’s including k=0), as can be seen using Eg. Since Z is independent of (because botiN—1y) and
(34). Such a nonlinear operatdx,, however, describes the [N,y) have the translational symmelryve can takeZ as
physics quite simply. Namely, we show ttaf (andb]) is a _ .
“natural coordinate”’[22] of interacting bosons in the sense E=ZY4N—1y|bo|N,y)/ V. (54)
that many physical properties can be simply descrilfieds )
crucial to find such a coordinate for the analysis of many-1nat is, from Eq.(48),
particle systems, because generally the knowledge of the -z n
wave function is not sufficient to perform the analysisor Z7"=E/n.
example, from Eq931), (42), and(44), we find that in terms Then, by taking the matrix element of E52) between

of b, the ground statgN,y) is simply a number state; IN—AN,y) and|N,y), we find

(59

|N,y>:%(55)n‘|oiy>_ (48) (N=AN,y|#'|N,y)=0 for YAN (JAN|<N). (56)

We now define two number operators by

In particular,
bolN,y) = VNIN—1y). (49) N’Ef d3r 4/ T(r) 9/ (), (57)
Sinceb’s of k#0 commute withb,, we also find that Ry=R— R 58
biN,y)=0 forallk#0. (500 Then, from Eqs(48), (52), (55), and(56), we find
Therefore, in terms of the new boson operators the ground <N,y|NIN,y)=V|E|2+<N,y|N’|N,y>, (59

state of the interacting bosons can be simply viewed as a
single-mode(k=0) number state. Note, however, that this Haence from Eq(58)

does not mean that was bilinear and diagonal with respect
to by. In fact, if it were the case then the enerigy , would (N,y|NoIN,y)=VI|E|?, (60)
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which may be interpreted as the “number of condensate par-
ticles” [15]. That is, in agreement with the standard result
[15], |E|? is the density of the condensate particles:

|E12=(Ng)/V=ny, (62)

TIME

where we have denoted the expectation value simply by
(-+-). We can therefore writ& as

2= Jnee's. (62) OfF=========--=

We thus find the formula for the decomposition f;bfas

N 63
nv '

which is extremely useful in the following analysis. Note
that we have obtained the finite renormalization:

|Z|=ng/n<1. (64)

Y
C. Relation to the previous work

o ) ) ) s FIG. 1. Our gedanken experimemM.bosons are confined in a

Lifshitz and Pitaevski[15] introducedan operatoE that  closed box fot<0. Att=0 a small hole is made in the box, so that

transforms an eigenstate withbosons into the correspond- a small leakage flud is induced, and the expectation valh(t))
ing eigenstate wittiN—1 bosonswithout giving an explicit  of the number of bosons in the box decreases with time.

form of 5 = . (They defined& through its matrix elements ] )
between elgenstates with different values\bfHowever, as and creation operators of free bosons. As a result, in contrast
mentioned in Sec. Il E, they did not give the forms of theto Egs.(49) and(67), application of eithep,, A, or aq) to
eigenstates of fixeNl.) They decomposed as[Eq.(26.4 of  the ground state dfl bosons does not yield the ground state
Ref.[15]] of N—1 bosons; it yields an excited state which is not an
A eigenstate. Moreover, they are not a natural coordinate of
=B+ (65) interacting bosons in the sense explained in the following.
Therefore, we do not use these operators, although they
In the present paper, from Eq@l7) and(63), we obtain the  would be useful in other problems.
explicit expression fol= as
D. Low-lying excited states

:eiM/ o bO e'*”\/ 'G(Y)a e 60, (66) Excited states of a fixed number of interacting bosons
were discussed in Ref§10,17,18. In the present formula-
tion, we may obtain low-lying excited states by the applica-
tion to [N,y) of functions ofb’s with k0. However, since
ZINy)=E2|N-1y), (670  we do not need any explicit expressions of the excited states
R in the following analyses, we do not seek them in the present
which wasassumedn Ref.[15]. The operatoZ character- paper.
izes the condensation by having a finite matrix elenj&bt.

np

From Egs.(49) and(62), we confirm that

In the following we will reveal a striking property & (or, IV. TIME EVOLUTION OF BOSONS IN A LEAKY BOX
equivalently,bo); it is a “natural coordinate” of interacting The time evolution of a condenséggin an open botes
bosons. was discussed previously for the casesnahinteracting

On the other hand other Operators which also Characteb'osons in Refill 13 and for the case dfvo-modeinter-
ize the condensation, were introduced in I??tto 17,18. acting bosons in Ref23]. In the present paper, usmng, we
Girardeau and ,AArn9W|lA[t10]Adef|ned,80=aONO , Gardiner  study the case of infinite-mode interacting bosons.

[17] introducedA = a(No/N)¥? [which is an operator form
of Egs.(9) and(10) of Ref.[17]], and Castin and Durfi 8] A. Gedanken experiment

. ~ _ * ~
introduceda,, =/ dr ipex(r't) ¢(r.,t). These operators are |, ot real systems, there is a finite probability of ex-
totally different from= or b, because complicated many- changing bosons between the box and the environment.

particle correlations, which are includedﬁﬁandf)o, arenot Hence, even If one fixeM at some timeN will fluctuate at o
) LA A - N . later times. Namely, the boson state undergoes a nonequilib-
'”C'“qed .mﬂo, A, aﬁd.atvlex- For exampleas,,, is alinear j,m time evolution when its number fluctuation is initially
combination of annihilation operators of free bosons, suppressed. To simulate this situation, we consider the fol-

whereash, is a nonlinear function of both the annihilation lowing gedanken experimexiEig. 1).
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Suppose that bosons are confined in a box which is kept athere\ is a constant which has the dimension of energy,
zero temperature, and that the wall of the box is not permeand f(r) is a dimensionless function which takes values of
able to the flow of the bosons, i.e., the probability of a bosororder unity wherr is located in the boundary region between
permeating through the wall within a time scale of our inter-the box and the environment, arfdr)=0 otherwise. Al-
est is negligible. If one measures the number of the bosons @iough the value ok and the form off depend on the struc-

a timet=t, (<0), and if the box is kept closed unti=0,  tures of the box and the hole or walls, our final res[#ts).,
then the density operatqi(t) of the bosons in the box for EQ.(107] are independent of such details.
t,<t<O is

C. Low-lying states of the total system

P(O=IN.YXN.y| for tp=t=<0. (68) We here list states of the total system which are relevant

Assume that this box is placed in a large room, which has nto the following analyses. Sincd S is weak, quasieigen-
bosons initially. Suppose now thattat 0 one makes a small states of the total system are well approximated by the prod-
holg(s), or slightly lowers the potential of the wall of the box, ucts of eigenstates of the box and of the environment. Recall
so that a small but finite flow of the bosons from the inside that|N—(N(t))|<N for the time interval of our interest, and
to the outside of the box becomes possible fer0. We  thatJ is small enough so that only transitions between the
study the time evolution far=0 of the density operatqgr(t) ~ 9round states for different values bfare possible. There-
of the bosons in the box. fore, among many possible states of the box the relevant
The expectation value dff will be a decreasing function States ar¢gN—AN,y)’s with [AN|<N. On the other hand,
of t, which we denotdN(t)) [hence(N(0))=N]. It is ob- ther_e are no l_)os_o_n_s in t_he environment-a0. That is, the
vious that ast—o the system approaches the equilibrium €nvironment is initially in thg _v_acuum,_whlch we denote
state. Therefore, we are most interestethi early stage of |0%). Hence, from Eq(68), the initial density operator of the
the time evolutionfor which total system is

IN—(N(t))[<N. (69) pe(t)=|N,y)|0F)(OF|(N,y| (t<0). (74)

Note that ifJ were not small enough, then the state in theBosons escape from the box into the environmentt fef.
box would evolve into a nonequilibrium excited state. TheSijnce 1>V, the boson density of the environment is kept
property of such a nonequilibrium state would dependessentially zero, and BEC does not occur in the environment,
strongly on details of the structures of the box and the holgor the time period of Eq(69). We can therefore take the
or wall. In the present paper, we are not interested in SUCQimpIe number StatdﬂEvnEu ...) of free bosons as eigen-
structure-sensitive states. Therefore, we assume Inat 5404 of the environment, wheng denotes the number of
fsé?zijl:f%r;gﬁ?catnjaetsogg ggn;g'ssr}zlgétween the ground statgg,q s in m_odek. For example, we shall_ Wﬂtﬂf)_ to de-
note the environment state in which maddés occupied by a
single boson whereas the other modes are empty. Therefore,
the relevant states of the total system, i.e., low-lying quasi-
Let V denote the volume of the room, which is much eigenstates ofi°®@ can be written as
larger than the volum¥ of the box;

B. Total Hamiltonian

The total boson field)®®(r) is defined ony where, sincé°® conserves the total number of bosons,
PR = g(r) + (1), (79) AN=S nE. -
k

where y(r) is localized in the box, angF= @'~ j is the
boson field of “environment.” Then, the total Hamiltonian

. . D. Time evolution in a short time interval At
may take the following form:

. o . We are interested in the reduced density operator of
H©Rl=H+ HE+ HES, (72)  bosons in the box for=0:

whereH andHF are the Hamiltonians of th¢ and ¢/ fields, p()=Tr¥ p©a{t)], (77)
respectively, when the box is closed. Small but finite ampli-

tudes of scattering between tiieand ¢ fields are caused by where TF is the trace operation over the environmer]t de-
the residual Hamiltoniaf ES. Under our assumptio(8), the ~ 9rees of freedom. The expectatiPn value of any obsen@ble
probability of multiparticle collisions during the escape from in the box can be evaluated frop{t) as

the box is negligible. ThereforélES should take the follow-

ing form: QD))= Tro?p*(1)Q]= Trp(1Ql,  (79)
NES_ 3, Et 5 where Tr denotes the trace operation over the degrees of
H )\J’ dr = (DTN g +H.c, (73 freedom in the box. Equatiofv4) yields
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p(0)=|N,y)}(N,yl, (79)

(Q(0))=(N,y|QIN,y). (80)

Although we may evaluaté(t) by solving a master equa-

tion, we here present a differetiiut equivalent method, by

which the physical meaning can be seen clearly. We begin

with noting that a single action dfi®S of Eq. (73) can only
change N,NF) by either —1,+1) or (+1,—1), and that

the latter change is impossible for the initial density operato

(74). Therefore, after a short time intervat which satisfies

JAt<1, the state vectdN,y)|0F) evolves into a state of the

following form:

e—iEN’yAt/h| N,y>|0E>

+3 c®(At)e En-1yt DA N 13)[1E) + O(N?),
k

(81
where
1 (at
Cﬁl’(At)Eﬁfo M el = mihg (82)
Mi=(L1g(N—1y[HESIN,y)|0F), (83
M=Eny—En-1y- (84)

Therefore, the reduced density operator is evaluated as

p(AD)=w(0;A1)|N,Y)N,y|

+W(L;ADIN=1y){N—1y|+O(\%), (85

where
w(0;At)=1—w(1;At), (86)
w(1;At)E; lcP(At)[2. (87)

Here, we have normalizes{At) to orderx? by Eq.(86). We
now takeAt in such a way that

hIE.<At<1/J, (89)

whereE, is the energy range a{° in which |M|? is finite
and approximately constant. Then, sirkceof the environ-
ment takes quasicontinuous valugg,1;At) becomes pro-
portional toAt:

w(1;At)=JAt. (89

To evaluate), we calculatéM |2 using Eqs(56) and(73) as

|Mk|2=|xf dr f(N)LEKN—1y[ &1 (r)E[N,y)|0F)|?

2
: (90)

No
:N—
n

A
Wf 0 (1) gE (1)
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wherecpE(r) is the mode function of modke of the environ-
ment. Regarding the volume dependencpé, behaves as
~1/\JV, wheread is localized in the boundary region, whose
volume is denoted by, of the box and the environment.
Therefore,

2

Ng A\
2.0 12V
M2 2 o

©n the other hand, from E@35), an escaping boson has the
energy ofgn. The density of states of the environment at this

energy is
YV  [mign
2mh3 2

Therefore, the leakage flukis estimated as

(92

no v |\|%v

ITNR Y

JmPgn= o[\ [*v?
m gn—T\/m an, (93

where numerical factors of order unity have been absorbed in
N. We observe thaf is reduced by the factov/V (<1),
which means that the escape process is a “surface effect,”
i.e., it occurs only in the boundary region. On the other hand,
J is enhanced by the factdd (>1). This enhancement is
typical to the boson condensation.

From our assumption of small, the right-hand side of
Eq. (93) should be smaller than the critical valdg of the
flux above which bosons in the box get excitead]. It is
seen that this condition is satisfied wheand/or|\ | is small
enough.

E. Time evolution for 0<Jt<N

We have found in the preceding subsection that the re-

duced density operatgr evolves from the pure stat&9) to

the mixed statd85) after a small time intervalt (<1/J).
Since the latter is a classical mixture of two different states,
IN,y)(N,y| and|[N—1y)(N—1y|, we can separately solve
the time evolution for each state. For each state, further tran-
sitions occur in the subsequent time intervaldt,RAt],
(2At,3At], ... . SinceV>V, the recursion time of an es-
caped boson to return to the original position is extremely
long (except for rare events whose probability0 as V
—o0). Therefore, as long ad<J,, we can neglect any
quantum as well as classical correlations between transitions
of different time intervals. This allows us to take the no-
boson state|0F), as the initial state of the environment for
eachtime interval ¢“At,(/+1)At], where/=0,1,2 ... .
Hence, for every time interval, we may use the same formula
(85). Furthermore, we can neglect thedependencies of
andJ under our assumption of E¢69). Therefore,

p(2A1)=w(0;At){w(0;A1)|N,y)(N,y|
+w(1;At)IN=1y){(N—-1y|}
+w(1;At){w(0;At)|[N=1y)}N—1y|
+W(LADN=2y)(N-2y[}
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=w(0;2A1)|N,y)(N,y|
FW(1;2A0)[N=1y)(N—1y|
+W(2;2A0)|N=2y)(N—2y], (94)
where

w(0;2At)=w(0;At)?
=(1-JAt)?, (95)
w(1;2At)=w(0;At)w(1;At)+w(1;At)w(0;At)
=2(1-JAt)JAt, (96)
W(2;2At)=w(1;At)w(1;At)
=J%(At)2. (97
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which approaches unity for ak as M—. For large but
finite M, we can easily show that

1 e*X ex M+1
K(M,xfl‘N\W(MH) M+ 1 (10

Therefore, under the conditidd03), we can takeK(M,Jt)
=1 to a very good approximation, and we henceforth dtop
from Eq. (104). Furthermore, sincev(m,t)~0 for m>Jt,
we may extend the summation of E9) to N. We thus
obtain

. N @Ay
p0=e 3 TN my)(N-my

N (Jt)me

=e Y m|myy><m,Y|- (107

The time evolution in the subsequent times can be calculated;, e this final result is valid even &t 0 (despite our use of

in a similar manner. Let
t=MAt, (98)

whereM (<N) is a positive integer. We find

M
[)(t):rZ,O w(m;t)|N—m,y)(N—m,y|, (99)

wherew(m;t) is the binomial distribution:

M _
W(m;t)=( m (1—=JADHM MJAL)™ (100

the assumptiotM >1), it is valid for allt as long as

0=<Jt<N and N>1. (108

Note that the final resultL07) is quite general because all the
details of the box-environment interactidh®S have been
absorbed inl.

The probabilityP(m,t) of finding m bosons in the box at
t is evaluated as

P(m,t)=w(N—m;t)

PG
=e Jt(N——m)!' (109)

We find from Eq.(99) that w(m;t) is the probability of
finding N—m bosons in the box &t From the conservation \ya cq|l this distribution the “shifted Poisson distribution,”

of the total number of bosons, E@r6), this probability — pecase it is obtained by shifting the center of the Poisson
equals the probability than bosons have escaped from the wisyrihution. The expectation values and variances are evalu-
box by the timet. Using Eq.(100), we find

ated as
M
(N(t)y= Tr{p(t)N]= 20 w(m;t)(N—m)=N-Jt, (N(t))=N-Jt, (110
(109 (NE(t))=Jt, (111)
S N(1)%)=(NF(1)%)=Jt. 112
(NE())= T p()NF]= X w(m;ym=J. (102 (ON(DF= (N1 (112

m=0

V. NUMBER VERSUS PHASE
SinceE, in Eq. (88) is of the order of the atomic energy, we _ _ ) _
can takeAt extremely small such that A. Cosine and sine operators of |nteract|ng many bosons

Roughly speaking, the conjugate observable of the num-

ber is the phase. More precisely, however, physical observ-
ables are not the phase itself, but the cosine and sine of the
phase. Namely, any physical measurement of a phase actu-
ally measures the cosine or sine of the pH&€8. In the case
of a single-mode bosof.e., a harmonic oscillator of a single

M>1 and M>Jt, (103

for a finitet that satisfies Eq69). In this case, Eq.100) can
be approximated by the Poisson distribution:

m
w(m;t)~K(M ,Jt)e*Jt(‘]t) . (104  degree of freedom it has been discussed that various defi-
m! nitions are possible for the cosine and sine operdt®5s

. o This ambiguity does not matter in our case, because we are
Here, K is the normalization factor, treating the case where the number of bosons is extremely
1 M m large, whereas differences among different definitions appear
=X 2 x= (105 only when the number of bosons is small. On the other hand,

K(M,x) m=o m!’ the crucial point in our case is how to select a single “‘coor-
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dinate” (dynamical variable with which the phase is de- sine operators dd, are used instead of Eqe.13) and(114).
fined, among a huge number of degrees of freedom. To fingye will touch on this point again in Sec. VII.

such a “proper coordinate” is generally very difficult in
many-body interacting systems.

Fortunately, we find thab, is the proper coordinate of
interacting bosons, with which we can successfully define
the cosine and sine operators of interacting many bosmns

C. Coherent state of interacting bosons

We define a coherent state of interacting bos@i8) by

12 —
. L |a,y>ze |a| /ZmE:O \/ﬁ|m,y>, (119
cosp= bo+b} . (113 '
2\blby+1 2\biby+1 which is labeled by and a complex number,
a=e\N. (120
sing= (114

1 L 1
bo— b} : The i ion i
e - e inverse transformation is
2i\blbo+1 2i\blby+1
T d¢
These are the same forms as those of a single harmonic os- IN,y>=f 2—|a,)/>- (121
. . -
cillator [25]. In our case, however, there is a huge number of

degrees of freedom with mutual interactions. As a result, thgeqarding the number and phase fluctuations, we can easily
Hamiltonian doeshot take th_e simple tillTln_ear form with ré- - ghow thafa,y) has the same properties as a coherent state of
spect tobg, hence the motion oby+b, is not that of a  a single-mode harmonic oscillatf25]. Namely,
harmonic-oscillator coordinate. Nevertheless, many formulas

for the single-mode case are applicable if they are based only (N)a'yE<a,y|N|a,y>=|a|2= N, (122
on the commutation relations of a boson operator. In particu-
lar, owing to Eq.(50), we can treat any states that have the <5N2>ayz<a’y| 5N2|a,y>=|a|2=N, (123
form of =,C,IN—m,y) as if we were treating a single- '
mode problem. and, for|a|?=N>1,

It will turn out in the following discussions that the above o
operators give reasonable results for the quantum phase of (sing),y=(a,y|sing|a,y)

interacting bosons. =[1- 1/(8|a’|2)+ .. sing, (124)

B. Number and phase fluctuations of|N,y)

(8SITP ) oy =(,yl(8SiN)? )
As we have shown in Sec. lll, the ground state of a fixed 5 .
number of bosongN,y) can be represented simply as a num- =(1/4]al’)(1=sif $)+---, (125

ber state if we use a “natural coordinat@. Note that this  and similar results for the cosine operator. It is customary to
state has a finite fluctuation af)a, due to many-body inter- express the results for the sine and cosine operators symboli-

actions. Nevertheless, the total number of boshinkas a  cally as
definite value:

(D) ay= (126
N)n.y=(N,y|N|N,y)=N, 11
< >N,y < y| | y> ( 5) <5¢2>a,y%1/(4|a|2):1/(4N) (127)
(ON?)ny=(N,y| SN?N,y)=0. (116 Therefore,|a,y) is the minimum-uncertainty state in the

) _ sense that it has thminimumallowable value of the number-
On the other hand, using the simple representa@@, we phase uncertainty produPUP [Eq. (38)]:
can easily show that

- (ON?), (8?),~1/4. (128
(cosg)ny=(N,y|cosp|N,y)=0, (117) _ o _
The magnitude of the number fluctuation is conveniently
(singhny=(N,y 5@“\' y)=0 (118 measured with the “Fano factorF, which is defined by
’y i) H .
— 2
Therefore, the ground state of a fixed number of bosons does F=(N%/(N). (129
not have a definite pha$20], as expected from_the number- gq, |a,y), we find
phase uncertainty relation, E@8). It was sometimes argued
that althoughN is definite the fluctuation céja, might al- (6N
low for a definite phasg26]. However, our resultl17) and Fay= (N) oy =1 (130

(118 show explicitly that the fluctuation cija, does not A

help to develop a definite phase. Note that thindsdue to  Therefore, usindpy, we have successfully constructed a very
our special choice of the cosine and sine operators, becauspecial state of interacting bosona,y), whose Fano factor
the same conclusion is obtained also when the cosine arid exactlyunity, and which has thminimumallowable value
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of the NPUP. This should be contrasted with Bogoliubov’s

ground statgag,y®)®, for which

H clj\4
(o) q;o (siniyg))

<N>d

FCIE

>1, (13D
||+ > (sinhyd))?
q#0

and the NPUP is larger than 1/4. The CSIB should not be

confused with| aq,y)°.

D. Number-phase-squeezed state of interacting bosons

We define a new statg,N,y) by

N
|&N.y)=VK(N [&P)e 423 jﬂlm y) (132
=VK(N,J¢[Pe '5'2’22 ﬂdﬁ)mlow
o V(N=m)tmi 7
(133
which is labeled by and a complex number,
¢=e’g. (134
We henceforth assume that
|€]2<N and N>1, (135

which allows us to seK(N,|&|?)=1 to a very good approxi-
mation.

The probabilityP(m) of finding m bosons for the state
|£,N,y) obeys the shifted Poisson distributidef. Eqg.
(109],

g2

(ﬁ:ﬁﬁT. (136

P(m)=e ¢’
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(5SIM ¢)eny=(EN,Y[(55ING)?|EN,y)
=(1/4/&?)(1— sif ¢p)+---, (142

and similar results for the cosine operator. As in the case of
the CSIB, we may express these results symbolically as

<¢ﬁNy%¢u
(8¢%) eny~11(4] 7).

Therefore, just age,y) does,|£N,y) has the minimum
value of the NPUP;

(143

(1449

(N e (0d%) e ny~1/4 for 1<|¢[?<N. (145

Since each component of the product satisﬁé&lzk,\,,y
<(6N?),, and (8542 ny> (8%, |EN,y) is obtained
by “squeezing”|«a,y) in the direction ofN, while keeping
the NPUP minimumJ(cf. The conventional squeezed state

has a larger NPUR25].) We thus call £,N,y) the “number-
phase-squeezed state of interacting bogbiB).”

E. Phase-randomized mixture
of number-phase-squeezed states of interacting bosons

We now take

£=€'?\It=¢(1)

That is, |¢|2=Jt. Then, inequalitieg135) are satisfied be-
cause of our assumptiofl08. We can show by explicit
calculation that Eq(107) can be rewritten as

- = do :
p<t>=f7 £|e'¢ﬁ,N,y><e'¢ﬁ,N,y|. (147

(146)

Therefore, the boson state in the box can be viewed either as
the shifted Poissonian mixture, E4.07), of NSIBs, or as the
phase-randomized mixturéPRM), Eq. (147), of NPIBs.

Both representations are simply described in termEzooﬂn
contrast, the samg(t) would be described in a very com-

The number fluctuation and the Fano factor are evaluated gslicated manner in terms of bare operators.

(N)eny=(ENYINIENY)=N=]£% (137

<6N2>§,N,y5<§!N!y|6N2|§!N!y>:|§|21 (138)
C(ONPeny €2 €7

§,N,y= <N>§YNyy _N_|§|2 N <1. (139)

As compared with Eqg123) and(130), we observe that the

state|£,N,y) has a very narrow distribution of the boson
number. On the other han,N,y) has a well-defined phase
[20] when

1<|&?<N. (140
In fact, under this condition we can easily show that
<Sin¢>§,N,y5<§:vNay|Sin¢|§!N!y>

=[1-1/(8|&*)+---]sing, (141

We have thus obtainedouble pictures(or representa-
tions), Eqgs.(107) and(147), for the samephysical statgsee
[27] and Appendix According to the former picture, the
state of the box is one of NSIBs, for which the number of
bosons is definitébut unknown, whereas the phase is com-
pletely indefinite. According to the latter picture, on the other
hand, the state is one of NPIBs, for which the number of
bosons has a finite fluctuatig@N2)~ Jt, whereas the phase
is almost definite[20] (but unknown, (8¢?)~1/(4Jt).
What allows these double pictures is the superposition prin-
ciple (see Appendix

In addition to Eqs(107) and(147), there are many other
ways to expresé(t) as different mixtures. Among them, Eq.
(107) is the form in whicheachelement of the mixture has
the smallest value of the number fluctuation, whereas in Eq.
(147 eachelement of the mixture has the smallest value of
the phase fluctuation. Therefore, the latter representation is
particularly convenient for discussing physical properties
that are related to the phase, as will be shown in Secs. VI B
and VII.
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F. Origin of the direction of the time evolution The detailed form ofV depends on the detailed structures of
As the time evolves, the number of bosons decreases athe measuring apparatus, and thus is of no interest here. In an
ideal case wher&N.,—0, W becomes Kronecker’s delta,
(N(t))=N-Jt. (148 and

As a result, the energy of the bosons in the box decreases pr(H)—|N,y)N,y|. (156
with t. For example, for each element of E447),
On the other hand, if the measurement is rather inaccurate in
('7JILN,y|HIe*VILN.Y)<(N.y|H[N,y) fort>0. suchaway that

(149
. . L ONer> V(ON(1)) = \/i, (157)
However, we note that this energy difference is just a con-

sequence of the difference {iN). Namely,|N,y) and the then almost no change ¢fis induced by the measurement,
NPIB have the same energy if they have the same value af it is of the first kind[30].

(N):

) ~ N B. Phase measurement
(' JIt,N+Jt,y|A|e'®It,N+It,y)~(N,y|H[N,y).
(1

50 Suppose that one measurgf the boson system whose
density operator is Eq107), or, equivalently, Eq(147). In

We can therefore conclude that the direction of the time evothis case, the latter representation is convenient. In fact, if the

lution, from |N,y) to the PRM of{£,N,y), is not determined measurement error

by an energy difference. Hence, it must be due to difference

in the nature of the wave functions. A study of such a nature, 1

however, needs many pages of analysis, which is beyond the Ober> V<5¢2>§,N,y:m:2_\/i' (158

scope of this paper, and thus we plan to describe it in future

[28]. and if the measurement is performed in such a way that the
backaction of the measurement is minimum, then the action

VI. ACTION OF MEASUREMENT OR ITS EQUIVALENCE of the measurement is just to fin@r, get to know the

“true” value of ¢, to the accuracy ob¢,,, among many

%ossibilities in the right-hand side of E¢L47). Therefore,

the density operator just after the measurement is generally

given by[30]

In the preceding section, we have obtained the doubl
pictures, Eqs(107) and (147). Depending on the physical
situation, either picture is conveniefsee Appendix To ex-
plain this point, we discuss two examples in this section.

A. Number measurement ;75('[)5 ¢D(¢ ¢)|el¢\/_ N Y><el¢\/_ N,y|.

Suppose that one measuféf the boson system whose (159
density operator is given by E@107), or, equivalently, by
Eq. (147). In this case, the former expression is convenientHere, ¢ is the value of¢ obtained by the measurement, and

In fact, if the measurement error D(¢p— (]5) is a smooth function which has the following
properties:
SNer< V{SN(1)2) = {3t, (151) B
D(¢é—¢)=0, (160

and if the measurement is of the first kif@9], then the
action of the measurement is to narrow the number distribu-

tion, to as small asN,,,, of the right-hand side of Eq107). D(¢=¢)~0 for [$=|=¢en, (163
That if5, the density_operator immediately after the measure- dé
ment is generally given b30] f ZwD(¢ $)= (162
N -
ﬁﬁ(t)zmzo W(m—ﬁ)lm,y)(m,y|. (152 The detailed form oD depends on the detailed structures of

the measuring apparatus, and thus is of no interest here.

On the other hand, if the measurement is very accurate in
Here,N is the value of¢ obtained by the measurement, and g ch g way that

W is a smooth function which has the following properties:

_ 1 1
W(m—N)=0, 153 S8Pen< (O eny=m = — = 163
( ) ( ) (;berr < d’ >§,N,y 2|§(t)| Zﬁ ( )
W(m—N)=~0 f —N|=6N 1 ~
(M=N)~0 for [m=N|=Ner, (154 thenp will “collapse” into another state whose phase fluc-
N tuation is less thafd¢?), v, . However, such an accurate
2 W(m—ﬁ)=1. (155 measurement is practically difficult wheri>1. Therefore,

m=0 in most experiments we may take H459 for the density
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According to this definition, we obtain the same results for
all of [N,y), [£N,y), and|a,y), whereg=¢'#\Jt, Jt<N,
anda=¢€'%\N. Namely, using Eqs(56) and(63), we find

lim  Y(r;,ry;)=ng, hence E=nye®, (167

[ri—rpl—=

for all of these states. Therefore, neither the ODLRO Bor
is able to distinguish between these states.

FIG. 2. Bosons are confined independently in two boxes. The
number of bosons in each box is fixed fer 0. If holes are made in
the boxes at>0, then the leakage fluxes are induced, exhibiting ~As an order parameter of the state for whiglis exactly
interference. fixed, Ref.[15] uses the “wave function of the condensate”

E, as defined by Eq53). It is clear that this definition is just
operator after the measurement, if the measurement is pes-special case of that of the preceding subsection. In fact, for
formed in such a way that the backaction of the measuremetN,y) Eq. (53) yields
is minimum. A '

For example, suppose that one prepares bosalepen- E=(N—-1y|#|N,y)= \/n—oe"”, (168
dentlyin two boxes(Fig. 2), where the number of bosons in
each box is fixed fot<0. At t=0 a small hole is made in in agreement with Eq(167).
each box, and small fluxes of bosons escape from the boxes.

Sincep of each box evolves as E(L47), it is clear that these C. Definition as the expectation value oy
fluxes can interferat each experimental ruf@s in the cases  Another definition of the order parameter is the expecta-
of noninteracting boson$11-13 and two-mode bosons . ~ . )
[23])) as the interference between two NPIBs of two boxes " value ofy, which we denote by¥’;
W(r)=(y(r)). (169

From the interference pattern, one can measure the relative

phase¢ of two condensates. After the measurementf

each box would take the form of E¢L59). Such an experi-  According to this definition, the ground stdteé,y) of a fixed
ment would be possible by modifying the experiment of Ref.nymper of bosons does not have a finite order parameter;
[31] in such a way tha becomes small enough.

B. Definition as a matrix element

W =(N,y|¢:(r)|N,y)=0. (170
VIl. ORDER PARAMETER

The order parameter of BEC can be defined in variousTh'S result is rather trivial becaugealtersN exactly by one.

ways. For the ground statge y°'>°' of the semiclassical On the other hand, it was sometimes conjectured in the lit-
Hamiltonian H®, different definitions give the same result. erature[26] that the eﬂxpectation value of the bare operatpr
explore these points in this section. body interactions because the number of bosons in the bare
state ofk=0 fluctuates due to the many-body scatterings.
However, this conjecture is wrong because by integrating

A. Off-di | long- d .
'agonat fohg-range order Eq. (170 overr we obtain

We first consider the two-point correlation function de-

fined by (N,y|ag|N,y)=0. (171
= T oot (r0 i
Y(ry.ra)=Trpd (r)g(ra)]. (164 Thatis, althougtala, fluctuates in the staf@,y) it does not
The system is said to possess the off-diagonal long-rang€ad to a finite(N.y|ag[N.y).
order (ODLRO) if [32—-34 In our gedanken experimeni(t) evolves as Eq(107),
or, equivalently, as Eq147). For this mixed ensemble,
lim  Y(rq,ry)#0. (1695 o
Irq=ral—o V= Tr[p(t)#]=0. (172

This limiting value cannot be finite without the condensationThis is theaverage over all elements the mixed ensemble,
of a macroscopic number of bosofigvithout the condensa- and corresponds to thaverage over many experimental
tion, we simply have lim _ | ..Y(ry,r2)=0 for the runs On the other hand¥ of each elementwhich corre-
ground state and for any finite excitatiohk this sense, Eq. Sponds toa possible result for a single experimental yus
(165) is a criterion of the condensation. different between the two expressions, E4€)7) and (147).

If the system possesses the ODLRO, it is customary td hatis, for each element of the mixtureis=0 for Eq.(107)
define the order parametgr by the asymptotic form of as  because of Eq.170), whereas for Eq(147)

Y (ry,r)~E*(r)E(rp). (166) W =(e'*It,N,y| €' *VILN,y) (173
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0.6 - accuracy thatbN=<2. In such a casejN would be larger
than 2 from the beginning, and each element of the mixture

05 e has the full and stable values #f and ¢ from the begin-

04 ning.

] We finally make a remark on the evolution at later times,
|| whereas we have only considered the early time stage for

((sin9)?)

03¢ which Jt<N. It is clear that the system eventually ap-
o2t/ \ 1 proaches the equilibrium state. However, a question is, what
| \ N=10* is the state after the early stage, but before the system
o1l \\ 1 reaches equilibrium? It is expected that the state would be
D some coherent state. We can show that this is indeed the case
0.0 ; [28]: ast—, p eventually approaches the PRM|af,y), in
0 5 10 which |a|?2=(N(t)) (<N) [35] andy is given by Eqs(22),
Jt (23), and(33) with n=(N(t))/V [35]. To show this, we must

— extend the theory of Sec. IV. This is beyond the scope of this
FIG. 3. Left scale{(sing)?) of the ¢=0 element of Eq(147). paper, and thus we plan to describe it in the fufi2@.

The dashed line represents 1igh Right scale1\1f|/d\efined by Eq. The summary of the present paper has been given in

(173. The dotted line denotds¥’|= \n,. Both ((sing)? and |¥| Sec. |.

are plotted againsit, the number of escaped bosons.

can be finite. As discussed in Secs. VD and V E, @4.7) ACKNOWLEDGMENTS
is the form in whicheachelement of the mixture has the  He|pfyl discussions with M. Ueda, K. Fujikawa, H. Fuku-
smallest value of the phase fluctuation. This indicates thafama, T. Kimura, and T. Minoguchi are acknowledged. The
each element of the mixture possesses the most defifite  aythors also thank M. D. Girardeau for informing them of
fluctuating value of ¥ when we take the representation Ref [10].
(147), among many representations of the saittd. We are
most interested in this case, becauses usually taken as a
macroscopic order parameter, which has a definite value
obeying the Gross-Pitaevskii equation. The simplest example of the douller more pictures is

Figure 3 plots|¥| of Eq. (173 as a function ofJt (the  a mixed state of a single spin. If the quantum state of a single
average number of escaped bogokige find thatfW| grows  spin-1/2 system is either the up-spin statez) or the down-
very rapidly, until it attains a constant val{ig5], spin state|—z), and if we have no information on which

state is realizedin other words, the component of the spin
W =(e'$\It,N,y| #le' VIt N,y)—e (T ny forJt=2.  is completely undefinedthen the density matrix is
(174

APPENDIX

. o1 1\ (—
This value equalsl of |a,y) with a=€'*|/N; p=zl+2(+2+3-2)(~2. (A1)
R _ No _ On the other hand, if the direction of the spin is either in the
V=(a,y| z,//|a,y>=e""\/n—va=e'(‘/’*"’) Jno. (175  +x direction|+x) or in the —x direction|—x), and if we
have no information on which state is realized, then the den-

Note here tha{¥| of |a,y) is renormalized by the factor SIly Matrixis

J]Z|=Jny/n because of the many-body interactions. .
SN2 p=35|+xX){+x|+ 3| —x){—x|. (A2)
We have also plotted(sing)“) of the =0 element of 2 2
Eq. (147 in Fig. 3. This is a measure of the phase fluctuation_ ) ) )
of the =0 element. Because of the rotational symmetry!t IS €asy to verify that Eqs(Al) and (A2) are identical.

with respect tap, we can regard it as a measure of the ph(,jsél'herefore, the same density mat_rix_ can l_ae_ interpreted in two
. . ——5 ways: thez component of the spin is definite, but unknown
fluctuation of every element. We find th&{sing)”) de-

creases rapidly adt is increased, until it behaves as [Eq. (A1)]; the x component of the spin is definite, but un-
known [Eg. (A2)]. Moreover,p has many other representa-

((sing)?)~1/(431), (176  tions, eg.,
for Jt=3. Therefore after the leakage of only two or three p=1+y)(+y|+ -y —yl. (A3)

bosons,|ei‘/’\/ﬁ,N,y) acquires the full, stable, and definite

(nonfluctuating) values oF and ¢, and thegauge symmetry As demonstrated by this simple example, a mixed state of a
is brokenin this sense. One might expect t{@N?) of the  quantum system generally has many representations, hence
order of (N) would be necessary to achieve such stable has many interpretations or picturé$his is a result of the

and ¢ because/dN?)=(N) for a CSIB. Our result shows superposition principl¢. Some picture is convenient depend-
that this expectation is wrong, becaude and ¢ already ing on the physical situation. For example, E42) is most
become stable whedt~2, for which (SN?)=Jt<(N).  convenient to analyze the case wherexfm@mponent of the
Practically, it seems rather difficult to fikl to such high  spin is measured.
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