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Ergodic hypothesis is not neccessary for statistical mechanics

See, e.g., Y. Oono, H. Tasaki, A. Sugita, ....

Is ‘equal a priori probability postulate’ (等重率の原理) necessary?



Lecture by AS at Univ. Tokyo, Komaba (since > 10 years ago)

熱力学： 清水「熱力学の基礎」（東大出版会）

要請II-(ii), (iv)

単純系のSは，エネルギーEを含むいくつかの相加変数の組E,X1, ..., Xt
（エントロピーの自然な変数）のC1級関数である：S = S(E,X1, · · · , Xt).
平衡状態は，E,X1, ..., Xtで一意的に指定される．

統計力学：清水「統計力学の基礎」（清水研HPにて公開中）

定義：ミクロカノニカル集団

E,X1, · · · , Xtの値が（相対的に無視できるゆらぎの範囲内で）等しいよ

うなミクロ状態を全て集めた集合をens(E,X1, · · · , Xt)と記す．

要請A0
孤立した単純系では，ens(E,X1, · · · , Xt)の中から任意にひとつミクロ状

態を選び出したとき，それはほとんど確実に，そのE,X1, · · · , Xtで指定

される平衡状態（に対応するミクロ状態のひとつ）である．



That is,
equilibrium state =⇒ many microstates

↓ ↑ ↑
E,X1, · · · , Xt | almost all

↓ |
ens(E,X1, · · · , Xt) =⇒ many microstates

Therefore, for macrovariables (which can be represented as observables)

equilibrium value =

⎧⎪⎪⎨⎪⎪⎩
its value in a state in ens(E,X1, · · · , Xt),

or

its average in ens(E,X1, · · · , Xt).

For most practical purposes, the latter is more convenient.

• Can avoid the risk of taking exceptional states.
• Can avoid troubles specific to integrable systems.



Replace A0 with a practical hypothesis A

定義 : ミクロカノニカル分布

ens(E,X1, · · · , Xt)に属する全てのミクロ状態に等しい確率を与えた確率

分布．

要請A : 等重率の原理（と本書では呼ぶ）

孤立した単純系の，エントロピーの自然な変数E,X1, · · · , Xtで指定され

る平衡状態は，ミクロカノニカル分布と，熱力学的に同じ状態になる．

Remarks:

• Postulte A0 ⇒ Postulte A

• One can employ Postulte A for most practical purposes.
• For deeper understanding, however, Postulate A0 should be taken.
• Boltzmann formula is also necessary (Postulate B).
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Partial proof of postulate A0

Notation:

• Abbreviate E,X1, · · · , Xt to E,N .
• EE,N : ‘Energy shell’ (≡ Hilbert subspace corresponding to ens(E,N))
• ρ̂eq : Gibbs state (e.g., ρ̂eq = e−βĤ/Z)

The following have been shown (roughly speaking):

(Popescu et al. (2006), Goldstein et al. (2006), A. Sugita (2006), P. Reimann (2007))

1. Almost all |ψi’s in EE,N are macrosopically identical; hψ|Â|ψi ' hψ0|Â|ψ0i.
2. Almost all |ψi’s in EE,N satisfy hψ|Â|ψi ' Tr

³
ρ̂eqÂ

´
.

Remark: Postulate A0 (or A) is not fully proved.

hψ|Â|ψi ' Tr
³
ρ̂eqÂ

´
= ?

To derive thermodynamics, one needs to derive the complete set of axioms of

thermodynamics (such as those given in 清水「熱力学の基礎」).



‘Almost all’ states in EE,N ?

A random vector in EE,N
|ψi =

X
ν

0
cν|νi.

{|νi}ν : an arbitrary orthonormal basis set of EE,NX
ν

0
: sum over this basis

{cν}ν : a set of random complex numbers, drawn uniformly from the unit sphereP
ν
0 |cν|2 = 1 in the complex space of dimension dim EE,N .



Subsystem
S. Popescu, A.J. Short, and A. Winter, Nature Phys. 2, 758 (2006).

S. Goldstein et al, Phys. Rev. Lett. 96, 050403 (2006).

Look at a small subsystem.

Let β be the (unknown) value of 1/T at the energy density E/N .

Theorem: For almost all |ψi in EE,N , the subsytem is in the canonical Gibbs
state. That is, as N →∞ (while E/N is fixed),

hψ|Âsub|ψi ∼ Tr
µ
1

Zsub
e−βĤsubÂsub

¶
for every observables of the subsystem.



Total system
A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).

P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).

Let ρ̂E,N be the microcanonical Gibbs state corresponding to ens(E,N).

It is clear that

hψ|Â|ψi ∼ Tr
³
ρ̂E,NÂ

´
does not hold for every observables of the total system.

However, it holds for every observables of statistical mechanical interest!

Let Â be a low-degree polynomial (i.e., degree¿ N) of local operators.

We call such an observable mechanical variable.

Theorem: For an arbitrary positive number ²

Prob
³¯̄̄
hψ|Â|ψi− Tr

³
ρ̂E,NÂ

´ ¯̄̄
≥ ²
´
≤ kÂk2
²2 dim EE,N

→ 0

as N →∞ (while E/N is fixed), for every mechanical variable Â.



Important for deeper understanding of statistical mechanics.

But, we want to go further.

For conceptual clarity ...

We call generally a set of pure quantum states thermal pure quantum states

(TPQs) for the microcanonical ensemble if for an arbitrary positive number ²

Prob
³¯̄̄
hψ|Â|ψi− Tr

³
ρ̂E,NÂ

´¯̄̄
≥ ²
´
≤ η²(N)

for every mechanical variable Â.

η²(N) : a function which vanishes as N →∞.
Furthermore ...

•We call each state of TPQs a TPQ.
• TPQs for other ensembles are similarly defined.



Getting a single TPQ is sufficient, with high probability, for

evaluating equilibrium values of mechanical variables.

Example:
P

ν
0 cν|νi of the previous works.

Problems:

1. Genuine thermodynamic variables (such as T, S) ?

Cannot be calculated as hψ|Â|ψi.
2. Hard to construct.

Needs to prepare a basis {|νi}ν of the energy shell.



Our solution

S. Sugiura and AS, arXiv:1112.0740.

• A new class of TPQs.
• A simple method for constructing them.
• Formulas giving genuine thermodynamic variables.

From a single TPQ, one can calculate all variables of statistical-mechanical

interest, including genuine thermodynamic variables, at finite temperature.

What does it imply?

Formulation of Statistical Mechanics
Conventional : ensembles and S = lnW or F = −T lnZ (and ergodicity)

↓
New : TPQ and our formula for genuine thermodynamic variables

Statistical mechanics based on TPQs
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Systems under consideration (and notation)

• A discrete quantum system composed of N sites.

• Hilbert space HN of dimension D = λN , where λ is a constant of O(1).

Primary purpose

Obtain results in the thermodynamic limit: N →∞ while E/N is fixed.

• Quantities per site:
— ĥ ≡ Ĥ/N
— u ≡ E/N
— (u;N) instead of (E,N).

• Do not write explicitly variables other than u and N , such as a magnetic
field.



Assumptions: Statistical mechanics is applicable

• Boltzmann formula is applicable (although we do not use it):
S(E,N) = ln [g(u;N)∆E] + o(N),

where g(u;N) is the density of states.

• It gives the correct thermodynamic entropy:
lim
N→∞

S(E,N)

N
= s(u;∞).

That is,

g(u;N) = exp[Ns(u;N)], lim
N→∞

s(u;N) = s(u;∞).

• The system is thermodynamically stable:

β0 ≡ ∂β

∂u
≤ 0.

Here, β(u;N) ≡ ∂s(u;N)

∂u
is the inverse temperature.



Remarks

• spin models, Hubburd models, ...
• Since D (= dimHN ) is finite, β < 0 in a high-energy region.
→ We construct TPQs in a low-energy region, where β > 0.



Construction of a new class of TPQs

1. Take a random vector from the whole Hilbert space HN ;
|ψ0i ≡

X
i

ci|ii.

• {|ii}i : an arbitrary orthonormal basis of HN
• {ci}i : a set of random complex numbers drawn uniformly from the unit

sphere
P |ci|2 = 1 of the D-dimensional complex space.

This construction is independent of the choice of {|ii}i.
→ Can use a trivial basis (such as a set of product states).

→ |ψ0i can be generated easily (unlike
P

ν
0 cν|νi).

Amplitude is almost equally distributed over all the energy eigenstates.

∴ [distribution of energy in |ψ0i] ∝ g(u;N).



2. Take a constant l of O(1) such that l ≥ emax.
Here, emin ≤ [eigenvalue of ĥ] ≤ emax.

3. Starting from |ψ0i, calculate
uk ≡ hψk|ĥ|ψki,

|ψk+1i ≡ (l − ĥ)|ψki/k(l − ĥ)|ψkik
iteratively for k = 0, 1, 2, · · · .
Note: Multiplying ĥ is much easier than diagonalizing it.

4. Terminate the iteration when uk gets low enough for one’s purpose (k at

this point is denoted by kterm).



We will show

• u0 corresponds to β = 0, i.e., g(u;N) takes the maximum at u = u0.
• u0 > u1 > u2 > · · · ≥ emin.
• kterm = O(N) at finite temperature,
• |ψ0i, |ψ1i, · · · become a series of TPQs corresponding to various energy den-
sities, u0, u1, · · · .
• Can calculate the equilibrium value of an arbitrary mechanical variable Â as
hψk|Â|ψki, as a function of uk.
• Dependence of hψk|Â|ψki on {ci}i is exponentially small in size N .
→ Only a single TPQ suffices for getting a fairly accurate value.



Proof of |ψki = TPQ

|ψ0i =
P
i ci|ii : independent of the choice of the basis

→ Take the energy eigenstates {|ni}n as {|ii}i
(although we never use such a basis in practical calculations)

|ψ0i =
X
n

cn|ni

After k-times multiplication of l − ĥ,
|ψki ∝ (l − ĥ)k|ψ0i =

X
n

cn(l − en)k|ni (ĥ|ni = en|ni)

The distribution function of u is

rk(u;N) ∝
1

δr

X
n s.t.en∈[u−δr/2,u+δr/2)

|cn|2(l − en)2k (δr = o(1))

=
1

D

1

δr

Z u+δr/2

u−δr/2
(l − u)2kg(u;N)du (D = dimHN )



Recalling that

g(u;N) = exp[Ns(u;N)]

we have

rk(u;N) ∝ D−1 exp[Ns(u;N) + 2k ln(l − u)]
= D−1 exp[Nξ(u;N)],

where

ξ(u;N) ≡ s(u;N) + 2κ ln(l − u),
κ ≡ k/N.

See PDF.

http://as2.c.u-tokyo.ac.jp/archive/mechnism_SSmethod_JPSSpring_0313.pdf


We define

ρ̂k ≡
1P

n(l − en)2k
X
n

(l − en)k|nihn|(l − en)k.

Its energy distributes according to rk(u;N).

→ It represents an equilibrium state specified by (u∗κ;N).
→ We call the corresponding ensemble the smooth microcanonical ensemble.



By generalizing the proof for
P

ν
0 cν|νi by A. Sugita (2006), we can show

For an arbitrary positive number ²

Prob
³¯̄̄
hψk|Â|ψki− Tr[ρ̂kÂ]

¯̄̄
≥ ²
´
≤ kÂk2rk(emin;N)

²2rk(u
∗
κ;N)

,

hψk|Â|ψki = Tr[ρkÂ]

for every mechanical variable Â.

• kÂk2 grows at most as a low-degree polynomial of N .

• rk(emin;N)
rk(u

∗
κ;N)

decreases exponentially at finite temperature (i.e., u∗κ > emin).

Therefore,

• |ψki’s are TPQs for the smooth microcanonical ensemble.
• hψk|Â|ψki is insensitive to the choice of {ci}i.
• Random average gives even better results.



Remarks

1. When Â is unbounded, kÂk should be replaced with
max
|φi∈H⊂N

|hφ|Â|φi|,

where H⊂N denotes a Hilbert subspace in which the values of macroscopic

variables (such as u and mz) are limited to certain finite ranges.

2. |ψki remains to be a TPQ after time evolution.

eĤt/i~|ψki ∝
X
n

e−ient/~cn(l − en)k|ni

∝ |ψki with another {cn}n.

c.f. Erroneous statement: “ρ̂ of an equilibrium state should be invariant

under time evolution, hence should be a function of Ĥ.”



Genuine thermodynamic variables

• T, S, · · · 6= mechanical variables
→ Cannot be calculated as hψ|Â|ψi.

• Ensemble formalism
— equal a priori probability postulate → mehcanical variables (and fluctu-

ation)

— Boltzmann formula → genuine thermodynamc variables (and mehcanical

variables)

• Impossible to obtain T, S, · · · from TPQs?

Possible because information about them is encoded in rk(u;N).



Formula for β(u;N)

rk(u;N) takes the peak at u = u
∗
κ that satisfies

β(u∗κ;N) = 2κ/(l − u∗κ).
↑ ↑

unknown function unknown value

Substituting uκ for u
∗
κ, we get

simple formula for β(u;N)

β(uκ;N) = 2κ/(l − uκ) +O(1/N).

→ β(uκ;N) as a function of uκ.

→ error = O(1/N)

→ sufficient for analytic calculations, but rather large for numerical com-

putaions.



Better formula for β(u;N)

Let

u•κ ≡ uκ − ξ000κ /2Nξ
00
κ
2
.

One can evaluate ξ00κ and ξ000κ easily by

hψk|(ĥ− uκ)2|ψki = 1/N |ξ00κ| +O(1/N2),
hψk|(ĥ− uκ)3|ψki = ξ000κ /N

2|ξ00κ|3 +O(1/N3).
We can show

u∗κ = u
•
κ +O(1/N

2).

Substituting u•κ for u∗κ, we get
better formula for β(u;N)

β(u•κ;N) = 2κ/(l − u•κ) +O(1/N2).

→ β(uκ;N) as a function of uκ, with an error of O(1/N
2)

→ sufficient for both analytic and numerical calculations.



However,

• β(u;N) is the inverse temperature of a finite system.
|βour formula(u;N)− β(u;N)| = O(1/N2). very good

• One is most interested in its thermodynamic limit β(u;∞).
• In general,

|β(u;N)− β(u;∞)| À O(1/N2). exact, but finite-size effect

• Therefore,
|βour formula(u;N)− β(u;∞)| À O(1/N2). rather poor



Even better formula for β(u;∞)
Consider C identical copies of the N -site system.

We denote quantities of this CN -site system by tilde;

|ψ̃0i ≡ |ψ0i⊗C,
|ψ̃ki ∝ (l − h̃)Ck|ψ̃0i,
h̃ ≡ (Ĥ ⊗ 1̂⊗(C−1) + 1̂⊗ Ĥ ⊗ 1̂⊗(C−2) + · · · + 1̂⊗(C−1) ⊗ Ĥ)/CN.

Taking the limit of C →∞, we have
ũ∗κ = ũ•κ +O(1/N

2),

ũ•κ ≡ u•κ +
ξ000κ + κ/(l − uκ)3

2N [ξ00κ + κ/(l − uκ)2]2
.

Substituting ũ•κ for u∗κ, we get
even better formula for β(u;∞)

β̃(ũ•κ;∞) = 2κ/(l − ũ•κ) +O(1/N2).



Entropy density

Since β =
∂s

∂u
, integration of β(u;N),β(u;∞) gives s(u;N), s(u;∞).

By generalizing Simpson’s rule, we have

formula for entropy density

s(u2p)− s(u2q) =
q−1X
`=p

v(u•2`, u
•
2`+1, u

•
2`+2) +O(

1

N2
).

Here,

u = (u;N) or (u;∞),
p, q = integers

v(x, y, z) ≡ (x− z){β(x) + β(z)}
2

−(x− z)
2[x{β(z)− β(y)} + y{β(x)− β(z)} + z{β(y)− β(x)}]

6(x− y)(y − z) .



Remark

We have also developed another method of calculating s, in which g(u;N) is

directly evaluated from the inner products of different series of TPQs.

(S. Sugiura and A. Shimizu, Proc. Meeting of Phys. Soc. Jpn. 2011, paper number 23aGA-6.)



Summary of our formulation

Take an arbitrary basis set of the whole Hilberet space.

Superpose the basis vectors with random complex numbers.

→ a random vector in the whole Hilberet space.

Multiply (l − ĥ) iteratively.
→ a new class of TPQs

→ values of all variables of statistical-mechanical interest.



Application to numerical computation

Purpose: demonstrate that our formalism does work well.

To give evidences, we need to apply our method to models such that

• rigorous results are known at finite temperature.
• results should be known for many quantities
(magnetization as a function of the magnetic field, correlation functions,

temperature as a function of the energy density, .....)

There are only a few models that meet this purpose!

The Heisenberg chain is one of such a few models.

Ĥ =
J

4

NX
i=1

[σ̂(i) · σ̂(i + 1)− hzσ̂z(i)]

Here, J = −1 (ferromagnetic) or J = 1 (antiferromagnetic).



Magnetization vs. magnetic field (J = −1)

Solid lines: exact results for N →∞ for various values of the energy density u.

(H. Nakamura and M. Takahashi, JPSJ 63, 2563 (1994)).

Circles: our method for N = 24 (those for N = 4-20 are also shown for u = −0.3J).



Correlation function vs. distance (J = +1 and hz = 0)

Solid lines: exact results for N →∞ for various values of the energy density u.

(J. Sato et al, Phys. Rev. Lett 106, 257201 (2011)).

Circles: our method for N = 24. Left inset: N = 16-24 at j = 2 for u = −0.36J .
Right inset: φ(j) at finite h at T ' 0.45J .



Temperature vs. energy density (J = +1)

Solid lines: exact results for N →∞ for various values of a magnetic field hz.

(K. Sakai, private communication).

Circles and diamonds: our method for N = 24.

Inset: 1/β̃(u;∞) for N = 8-24.



Our method is effective over a wide range of T

Good results over a wide range of T , from T ¿ J to T À J .

Reason:

P
³¯̄̄
hψk|Â|ψki− Tr[ρ̂kÂ]

¯̄̄
≥ ²
´
≤ kÂk

2rk(emin;N)

²2rk(u
∗
κ;N)

is exponentially small as long as s (and hence T ) is finite of O(1).

Practical computations with finite N :

T (= 1/β̃(u•κ;∞)) can be lowered as long as
rk(emin;N)

rk(u
∗
κ;N)

¿ 1.



Comparizon with other numerical methods

Finite T

→ exponentially large number of states in EE,N .
→ computation of eigenstates in EE,N is pretty hard.
→ our method takes full advantage of such a large number of states!

→ just a single TPQ gives all quantities of statistical-mechanical interest.

Applicable to

- systems of any spatial dimensions

- frustrated systems

- fermion systems

Computational resources ¿ those of the diagonalization.

# of non-vanishing elements of Ĥ = O(N2N ) for the Heisenberg model.

→ Since k = O(N), the computational time = O(N22N ).

→ Only two hours on a WS to compute all data in the above figures.

→ Even faster by parallelizing the algorithm, which is quite easy in our method.



Quantum Monte Carlo method

Much faster.

But, negative sign problem in

- frustrated systems

- fermion systems.

Density-matrix renormalization group method (S. R. White, 1992)

Successful for 1d systems.

Extended to finite temperature.

But, its effectiveness in two- or more-dimensional systems is not clear yet.

Microcanonical Lanczos method (M. W. Long et al, PRB 68, 235106 (2003))

Tried to obtain not TPQs but eigenstates.

Costs more computational time than ours.

Computing genuine thermodynamic variables seems more difficult than ours.

∴ Our method will make it possible to analyze systems which could not be

analyzed with other methods.



Summary of Application to numerical computation

• Application to the Heisenberg chain, for which rigorous results are known for
— magnetization vs. magnetic field

— correlation function

— temperature vs. energy density

• Our results agree well with the rigorous results for all these quantities.
• Over a wide temperature range: from T ¿ J to T À J .

• Extremely fast: only two hours on a WS.
• Applicable to
— systems of any spatial dimensions

— frustrated systems

— fermion systems

• Possible to analyze systems which could not be analyzed with other methods.
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Treatment of phase transitions

ex. a first-order transition

Thermodynamics:

s(T ;∞) is discontinuous at T = Ttr.
→ u(T ;∞) is discontinuous at T = Ttr.
→ c = T∂s/∂T = ∂u/∂T diverges at T = Ttr.

In contrast, β(u;∞) is continuous even at T = Ttr.
→ c = −β2/(∂β/∂u)N =∞ corresponds to β = constant.



Phase transition viewed in the entropy representation

Ref. 清水明「熱力学の基礎」(東大出版会, 2007)

• G(T, P,N) : T, P,N 9 equilibrium state

• S(U, V,N) : U, V,N → equilibrium state

水

水蒸気

1気圧

1気圧

1気圧

(i) (ii) (iv)

1気圧

(iii)

水

水蒸気水蒸気

水を１気圧に保ったまま温める



u(T, P ) is discontinuous T (u, P ) has a plateau

Spin systems

V → Mz, P → hz
u(T, P ) → u(T, hz) : canonical formalism

T (u, P ) → T (u, hz) : our formalism



Canonical formalism

T is an independent variable

→ calculate a discontinuous function u(T ;∞).
→ calculation is hard around T = Ttr.

Our formalism

u is taken as an independent variable

→ calculate β(u;∞), which is continuous even at T = Ttr.
→ calculation is easy (e.g., interpolation is effecive)

→ calculate c from c = −β2/(∂β/∂u)N .
→ c =∞ corresponds to β = constant; easily identified!

Our formalism is advantageous to finding phase transitions.



Entanglement

TPQ |ψki and the mixed state ρ̂k of the corresponding ensemble
• Identical concerning mechanical variables.
• But, completely different with respect to entanglement.

Example: T À J

ρ̂k ' (1/D)1̂ ← no entanglement.

|ψki has exponentially large entanglement.
(A. Sugita and AS, JPSJ 74 (2005) 1883).



Bipartite entanglement measured by von Neumann entropy

The von Neumann entropy of the subsystem,

SvN ≡ −Tr(ρ̂n log2 ρ̂n),
is a good measure of bipartite entanglement for pure states.



SvN vs. n (J = +1, N = 16, hz = 0)

Solid lines: results for different energy densities, −0.44J ≤ u ≤ −0.01J .



An equilibrium state can be represented either by a TPQ with exponentially

large entanglement or by a mixed state with much less entanglement.

Their difference can be detected only by high-order polynomials of local opera-

tors, which are not of statistical-mechanical interest. (A. Sugita, 2006)

c.f. Related arguments:
- A. Sugita and AS, J. Phys. Soc. Jpn. 74 (2005) 1883.

- AS and T. Morimae, Phys. Rev. Lett. 95 (2005) 090401.



Other new classes of TPQs

|ψki ∝ (l − ĥ)k|ψ0i −→ |ψi ∝ Q(ĥ)|ψ0i
Here, Q(u) is any differentiable real function such that

• Q(u)2g(u;N) has a sharp peak.
• Its width vanishes as N →∞.
• Q(u)2g(u;N) outside the peak decays quickly.
One can calculate various quantities as we have done using |ψki, e.g.,

β(u∗κ;N) =
2κ

(l − u∗κ)
−→ β(u∗;N) = −2Q

0(u∗)
NQ(u∗)

.



What is thermal fluctuation?

See PDF.

http://as2.c.u-tokyo.ac.jp/~shmz/zakkifiles/11-08-26.html


Summary

• A new class of TPQs.
• A simple method for constructing them.
• Formulas giving genuine thermodynamic variables.

From a single TPQ, one can calculate all variables of statistical-mechanical

interest, including genuine thermodynamic variables, at finite temperature.

What does it imply?

Formulation of Statistical Mechanics
Conventional : ensembles and S = lnW or F = −T lnZ (and ergodicity)

↓
New : TPQ and our formula for genuine thermodynamic variables

Statistical mechanics based on TPQs


