Statistical Mechanics without Ensembles

Akira Shimizu

Department of Basic Science, University of Tokyo, Komaba (東京大学総合文化研究科)

> Collaborator: SHO SUGIURA

Reference:

S. Sugiura and AS, arXiv:1112.0740.

CONTENTS

- 1. Introduction: Principles of statistical mechanics revisited.
- 2. Thermal Pure Quantum states (TPQs)
- 3. Formulation of statistical mechanics with TPQs
 - (a) Construction of a new class of TPQs
 - (b) Genuine thermodynamics variables
 - (c) Application to numerical computation
- 4. Discussions

Ergodic hypothesis is not neccessary for statistical mechanics See, e.g., Y. Oono, H. Tasaki, A. Sugita,

Is 'equal a priori probability postulate' (等重率の原理) necessary?

Lecture by AS at Univ. Tokyo, Komaba (since > 10 years ago) 熱力学: 清水「熱力学の基礎」(東大出版会) 要請 II-(ii), (iv) 単純系のSは, エネルギーEを含むいくつかの相加変数の組 $E, X_1, ..., X_t$ (エントロピーの自然な変数)のC¹級関数である: $S = S(E, X_1, ..., X_t)$. 平衡状態は, $E, X_1, ..., X_t$ で一意的に指定される.

統計力学:清水「統計力学の基礎」(清水研HPにて公開中)

 E, X_1, \cdots, X_t の値が(相対的に無視できるゆらぎの範囲内で)等しいようなミクロ状態を全て集めた集合を $ens(E, X_1, \cdots, X_t)$ と記す.

一定義:ミクロカノニカル集団

—— 要請A₀ -

孤立した単純系では、 $ens(E, X_1, \dots, X_t)$ の中から任意にひとつミクロ状態を選び出したとき、それはほとんど確実に、その E, X_1, \dots, X_t で指定される平衡状態(に対応するミクロ状態のひとつ)である.

That is,

 $\begin{array}{ccc} \text{equilibrium state} & \Longrightarrow \text{ many microstates} \\ & \downarrow \uparrow & & \uparrow \\ & E, X_1, \cdots, X_t & & | \text{ almost all} \\ & \downarrow & & | \\ & \text{ens}(E, X_1, \cdots, X_t) \implies \text{many microstates} \end{array}$

Therefore, for macrovariables (which can be represented as observables)

equilibrium value =
$$\begin{cases} \text{its value in a state in } \operatorname{ens}(E, X_1, \cdots, X_t), \\ \text{or} \\ \text{its average in } \operatorname{ens}(E, X_1, \cdots, X_t). \end{cases}$$

For most practical purposes, the latter is more convenient.

- Can avoid the risk of taking exceptional states.
- Can avoid troubles specific to integrable systems.

Replace A_0 with a practical hypothesis A

- **定義:**ミクロカノニカル分布 —

 $ens(E, X_1, \dots, X_t)$ に属する全てのミクロ状態に等しい確率を与えた確率 分布.

_____ 要請A:等重率の原理(と本書では呼ぶ)_____ 孤立した単純系の,エントロピーの自然な変数*E*,*X*₁,…,*X*_tで指定され る平衡状態は,ミクロカノニカル分布と,熱力学的に同じ状態になる.

Remarks:

- Postulte $A_0 \implies$ Postulte A
- One can employ Postulte A for most practical purposes.
- For deeper understanding, however, Postulate A_0 should be taken.
- Boltzmann formula is also necessary (Postulate B).

CONTENTS

- 1. Introduction: Principles of statistical mechanics revisited.
- 2. Thermal Pure Quantum states (TPQs)
- 3. Formulation of statistical mechanics with TPQs
 - (a) Construction of a new class of TPQs
 - (b) Genuine thermodynamics variables
 - (c) Application to numerical computation
- 4. Discussions

Partial proof of postulate A_0

Notation:

• Abbreviate E, X_1, \cdots, X_t to E, N.

• $\mathcal{E}_{E,N}$: 'Energy shell' (\equiv Hilbert subspace corresponding to ens(E,N))

•
$$\hat{\rho}^{eq}$$
 : Gibbs state (e.g., $\hat{\rho}^{eq} = e^{-\beta \hat{H}}/Z$)

The following have been shown (roughly speaking): (Popescu et al. (2006), Goldstein et al. (2006), A. Sugita (2006), P. Reimann (2007)) 1. Almost all $|\psi\rangle$'s in $\mathcal{E}_{E,N}$ are macrosopically identical; $\langle \psi | \hat{A} | \psi \rangle \simeq \langle \psi' | \hat{A} | \psi' \rangle$. 2. Almost all $|\psi\rangle$'s in $\mathcal{E}_{E,N}$ satisfy $\langle \psi | \hat{A} | \psi \rangle \simeq \text{Tr} \left(\hat{\rho}^{eq} \hat{A} \right)$.

Remark: Postulate A_0 (or A) is not fully proved.

$$\langle \psi | \hat{A} | \psi \rangle \simeq \operatorname{Tr} \left(\hat{\rho}^{eq} \hat{A} \right) = ?$$

To *derive thermodynamics*, one needs to derive the complete set of axioms of thermodynamics (such as those given in 清水「熱力学の基礎」).

'Almost all' states in $\mathcal{E}_{E,N}$?

A random vector in $\mathcal{E}_{E,N}$

$$|\psi
angle = \sum_{
u}' c_{
u} |
u
angle.$$

 $\{|\nu\rangle\}_{\nu}$: an arbitrary orthonormal basis set of $\mathcal{E}_{E,N}$ \sum' : sum over this basis

 $\{c_{\nu}\}_{\nu}$: a set of random complex numbers, drawn uniformly from the unit sphere $\sum_{\nu}' |c_{\nu}|^2 = 1$ in the complex space of dimension dim $\mathcal{E}_{E,N}$.

Subsystem

S. Popescu, A.J. Short, and A. Winter, Nature Phys. 2, 758 (2006).
S. Goldstein *et al*, Phys. Rev. Lett. 96, 050403 (2006).

Look at a small subsystem.

Let β be the (unknown) value of 1/T at the energy density E/N.

Theorem: For almost all $|\psi\rangle$ in $\mathcal{E}_{E,N}$, the subsystem is in the canonical Gibbs state. That is, as $N \to \infty$ (while E/N is fixed),

$$\langle \psi | \hat{A}_{\rm sub} | \psi \rangle \sim \text{Tr} \left(\frac{1}{Z_{\rm sub}} e^{-\beta \hat{H}_{\rm sub}} \hat{A}_{\rm sub} \right)$$

for every observables of the subsystem.

Total system

A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147 (2006).
P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).

Let $\hat{\rho}_{E,N}$ be the microcanonical Gibbs state corresponding to ens(E, N). It is clear that

$$\langle \psi | \hat{A} | \psi \rangle \sim \text{Tr} \left(\hat{\rho}_{E,N} \hat{A} \right)$$

does not hold for every observables of the total system.

However, it holds for every observables of statistical mechanical interest!

Let \hat{A} be a low-degree polynomial (i.e., degree $\ll N$) of local operators. We call such an observable mechanical variable.

Theorem: For an arbitrary positive number ϵ

$$\operatorname{Prob}\left(\left|\langle\psi|\hat{A}|\psi\rangle - \operatorname{Tr}\left(\hat{\rho}_{E,N}\hat{A}\right)\right| \ge \epsilon\right) \le \frac{\|\hat{A}\|^2}{\epsilon^2 \dim \mathcal{E}_{E,N}} \to 0$$

as $N \to \infty$ (while E/N is fixed), for every mechanical variable \hat{A} .

Important for deeper understanding of statistical mechanics. But, we want to go further.

For conceptual clarity ...

We call generally a set of pure quantum states *thermal pure quantum states* (TPQs) for the microcanonical ensemble if for an arbitrary positive number ϵ Prob $\left(\left| \langle \psi | \hat{A} | \psi \rangle - \text{Tr} \left(\hat{\rho}_{E,N} \hat{A} \right) \right| \ge \epsilon \right) \le \eta_{\epsilon}(N)$

for every mechanical variable \hat{A} .

 $\eta_{\epsilon}(N)$: a function which vanishes as $N \to \infty$.

Furthermore ...

- We call each state of TPQs a TPQ.
- TPQs for other ensembles are similarly defined.

Getting a single TPQ is sufficient, with high probability, for evaluating equilibrium values of mechanical variables.

Example: $\sum_{\nu}' c_{\nu} |\nu\rangle$ of the previous works.

Problems:

- 1. Genuine thermodynamic variables (such as T, S)? Cannot be calculated as $\langle \psi | \hat{A} | \psi \rangle$.
- 2. Hard to construct.

Needs to prepare a basis $\{|\nu\rangle\}_{\nu}$ of the energy shell.

Our solution

S. Sugiura and AS, arXiv:1112.0740.

- A new class of TPQs.
- A simple method for constructing them.
- Formulas giving genuine thermodynamic variables.

From a single TPQ, one can calculate all variables of statistical-mechanical interest, including genuine thermodynamic variables, at finite temperature.

What does it imply?

Formulation of Statistical Mechanics Conventional : ensembles and $S = \ln W$ or $F = -T \ln Z$ (and ergodicity) \downarrow New : TPQ and our formula for genuine thermodynamic variables Statistical mechanics based on TPQs

CONTENTS

- 1. Introduction: Principles of statistical mechanics revisited.
- 2. Thermal Pure Quantum states (TPQs)
- 3. Formulation of statistical mechanics with TPQs
 - (a) Construction of a new class of TPQs
 - (b) Genuine thermodynamics variables
 - (c) Application to numerical computation
- 4. Discussions

Systems under consideration (and notation)

- \bullet A discrete quantum system composed of N sites.
- Hilbert space \mathcal{H}_N of dimension $D = \lambda^N$, where λ is a constant of O(1).

 \sim Primary purpose \sim Obtain results in the thermodynamic limit: $N \rightarrow \infty$ while E/N is fixed.

- Quantities per site:
 - $-\hat{h} \equiv \hat{H}/N$
 - $u \equiv E/N$
 - (u; N) instead of (E, N).
- Do not write explicitly variables other than u and N, such as a magnetic field.

Assumptions: Statistical mechanics is applicable

• Boltzmann formula is applicable (although we do not use it):

$$S(E, N) = \ln \left[g(u; N) \Delta E \right] + o(N),$$

where g(u; N) is the density of states.

• It gives the correct thermodynamic entropy:

$$\lim_{N \to \infty} \frac{S(E, N)}{N} = s(u; \infty).$$

That is,

$$g(u;N) = \exp[Ns(u;N)], \quad \lim_{N \to \infty} s(u;N) = s(u;\infty).$$

• The system is thermodynamically stable:

$$\beta' \equiv \frac{\partial \beta}{\partial u} \le 0.$$

Here, $\beta(u; N) \equiv \frac{\partial s(u; N)}{\partial u}$ is the inverse temperature.

Remarks

- \bullet spin models, Hubburd models, ...
- Since $D \ (= \dim \mathcal{H}_N)$ is finite, $\beta < 0$ in a high-energy region.
 - \rightarrow We construct TPQs in a low-energy region, where $\beta > 0$.

Construction of a new class of TPQs

1. Take a random vector from the whole Hilbert space \mathcal{H}_N ;

$$\psi_0 \rangle \equiv \sum_i c_i |i\rangle.$$

- $\{|i\rangle\}_i$: an arbitrary orthonormal basis of \mathcal{H}_N
- $\{c_i\}_i$: a set of random complex numbers drawn uniformly from the unit sphere $\sum |c_i|^2 = 1$ of the *D*-dimensional complex space.

This construction is independent of the choice of $\{|i\rangle\}_i$.

- $\rightarrow\,$ Can use a trivial basis (such as a set of product states).
- $\rightarrow |\psi_0\rangle$ can be generated easily (unlike $\sum_{\nu}' c_{\nu} |\nu\rangle$).

Amplitude is almost equally distributed over all the energy eigenstates.

 \therefore [distribution of energy in $|\psi_0\rangle$] $\propto g(u; N)$.

- **2.** Take a constant l of O(1) such that $l \ge e_{\max}$. Here, $e_{\min} \le [\text{eigenvalue of } \hat{h}] \le e_{\max}$.
- **3.** Starting from $|\psi_0\rangle$, calculate

$$\begin{aligned} u_k &\equiv \langle \psi_k | \hat{h} | \psi_k \rangle, \\ |\psi_{k+1} \rangle &\equiv (l - \hat{h}) |\psi_k \rangle / \| (l - \hat{h}) |\psi_k \rangle \| \end{aligned}$$

iteratively for $k = 0, 1, 2, \cdots$.

Note: Multiplying \hat{h} is much easier than diagonalizing it.

4. Terminate the iteration when u_k gets low enough for one's purpose (k at this point is denoted by k_{term}).

We will show

- u_0 corresponds to $\beta = 0$, i.e., g(u; N) takes the maximum at $u = u_0$.
- $u_0 > u_1 > u_2 > \cdots \ge e_{\min}$.
- $k_{\text{term}} = O(N)$ at finite temperature,
- $|\psi_0\rangle, |\psi_1\rangle, \cdots$ become a series of TPQs corresponding to various energy densities, u_0, u_1, \cdots .
- Can calculate the equilibrium value of an arbitrary mechanical variable \hat{A} as $\langle \psi_k | \hat{A} | \psi_k \rangle$, as a function of u_k .
- Dependence of $\langle \psi_k | \hat{A} | \psi_k \rangle$ on $\{c_i\}_i$ is exponentially small in size N. \rightarrow Only a single TPQ suffices for getting a fairly accurate value.

$\text{Proof of } \ket{\psi_k} = \text{TPQ}$

 $|\psi_0\rangle = \sum_i c_i |i\rangle$: independent of the choice of the basis \rightarrow Take the energy eigenstates $\{|n\rangle\}_n$ as $\{|i\rangle\}_i$ (although we never use such a basis in practical calculations)

$$|\psi_0\rangle = \sum_n c_n |n\rangle$$

After k-times multiplication of $l - \hat{h}$,

$$|\psi_k\rangle \propto (l-\hat{h})^k |\psi_0\rangle = \sum_n c_n (l-e_n)^k |n\rangle \quad (\hat{h}|n\rangle = e_n |n\rangle)$$

The distribution function of u is

$$r_k(u;N) \propto \frac{1}{\delta_r} \sum_{\substack{n \text{ s.t.} e_n \in [u-\delta_r/2, u+\delta_r/2)}} |c_n|^2 (l-e_n)^{2k} \qquad (\delta_r = o(1))$$
$$= \frac{1}{D} \frac{1}{\delta_r} \int_{u-\delta_r/2}^{u+\delta_r/2} (l-u)^{2k} g(u;N) du \qquad (D = \dim \mathcal{H}_N)$$

Recalling that

$$g(u; N) = \exp[Ns(u; N)]$$

we have

$$r_k(u; N) \propto D^{-1} \exp[Ns(u; N) + 2k \ln(l-u)]$$

= $D^{-1} \exp[N\xi(u; N)],$

where

$$\begin{split} \xi(u;N) &\equiv s(u;N) + 2\kappa \ln(l-u), \\ \kappa &\equiv k/N. \end{split}$$

See PDF.

We define

$$\hat{\rho}_k \equiv \frac{1}{\sum_n (l-e_n)^{2k}} \sum_n (l-e_n)^k |n\rangle \langle n|(l-e_n)^k.$$

Its energy distributes according to $r_k(u; N)$.

- \rightarrow It represents an equilibrium state specified by $(u_{\kappa}^*; N)$.
- $\rightarrow\,$ We call the corresponding ensemble the smooth microcanonical ensemble.

By generalizing the proof for $\sum_{\nu}' c_{\nu} |\nu\rangle$ by A. Sugita (2006), we can show

For an arbitrary positive number ϵ

$$\operatorname{Prob}\left(\left|\langle\psi_{k}|\hat{A}|\psi_{k}\rangle - \operatorname{Tr}[\hat{\rho}_{k}\hat{A}]\right| \geq \epsilon\right) \leq \frac{\|\hat{A}\|^{2}r_{k}(e_{\min};N)}{\epsilon^{2}r_{k}(u_{\kappa}^{*};N)},$$
$$\overline{\langle\psi_{k}|\hat{A}|\psi_{k}\rangle} = \operatorname{Tr}[\rho_{k}\hat{A}]$$

for every mechanical variable \hat{A} .

• $\|\hat{A}\|^2$ grows at most as a low-degree polynomial of N. • $\frac{r_k(e_{\min}; N)}{r_k(u_{\kappa}^*; N)}$ decreases exponentially at finite temperature (i.e., $u_{\kappa}^* > e_{\min}$).

Therefore,

- $|\psi_k\rangle$'s are TPQs for the smooth microcanonical ensemble.
- $\langle \psi_k | \hat{A} | \psi_k \rangle$ is insensitive to the choice of $\{c_i\}_i$.
- Random average gives even better results.

Remarks

1. When \hat{A} is unbounded, $\|\hat{A}\|$ should be replaced with $\max_{|\phi\rangle\in\mathcal{H}_N^{\subset}} |\langle\phi|\hat{A}|\phi\rangle|,$

where \mathcal{H}_N^{\subset} denotes a Hilbert subspace in which the values of macroscopic variables (such as u and m_z) are limited to certain finite ranges.

2. $|\psi_k\rangle$ remains to be a TPQ after time evolution.

$$e^{\hat{H}t/i\hbar}|\psi_k
angle \propto \sum_n e^{-ie_nt/\hbar}c_n(l-e_n)^k|n
angle$$

 $\propto |\psi_k
angle$ with another $\{c_n\}_n$.

c.f. Erroneous statement: " $\hat{\rho}$ of an equilibrium state should be invariant under time evolution, hence should be a function of \hat{H} ."

Genuine thermodynamic variables

- $T, S, \dots \neq$ mechanical variables
 - \rightarrow Cannot be calculated as $\langle \psi | \hat{A} | \psi \rangle$.
- Ensemble formalism
 - equal a priori probability postulate \rightarrow mehcanical variables (and fluctuation)
 - Boltzmann formula \rightarrow genuine thermodynamc variables (and mehcanical variables)
- Impossible to obtain T, S, \cdots from TPQs?

Possible because information about them is encoded in $r_k(u; N)$.

Formula for $\beta(u; N)$

 $\rightarrow \beta(u_{\kappa}; N)$ as a function of u_{κ} .

 \rightarrow error = O(1/N)

 $\rightarrow\,$ sufficient for analytic calculations, but rather large for numerical computations.

Better formula for $\beta(u; N)$

Let

$$u_{\kappa}^{\bullet} \equiv u_{\kappa} - \xi_{\kappa}^{\prime\prime\prime}/2N\xi_{\kappa}^{\prime\prime2}.$$

One can evaluate ξ_{κ}'' and ξ_{κ}''' easily by

$$\langle \psi_k | (\hat{h} - u_\kappa)^2 | \psi_k \rangle = 1/N |\xi_\kappa''| + O(1/N^2), \langle \psi_k | (\hat{h} - u_\kappa)^3 | \psi_k \rangle = \xi_\kappa'''/N^2 |\xi_\kappa''|^3 + O(1/N^3).$$

We can show

$$u_{\kappa}^* = u_{\kappa}^{\bullet} + O(1/N^2).$$

Substituting u_{κ}^{\bullet} for u_{κ}^{*} , we get

— better formula for $\beta(u; N)$

$$\beta(u_{\kappa}^{\bullet}; N) = 2\kappa/(l - u_{\kappa}^{\bullet}) + O(1/N^2).$$

 $\rightarrow \beta(u_{\kappa}; N)$ as a function of u_{κ} , with an error of $O(1/N^2)$ \rightarrow sufficient for both analytic and numerical calculations. However,

- $\beta(u; N)$ is the inverse temperature of a *finite* system. $|\beta_{\text{our formula}}(u; N) - \beta(u; N)| = O(1/N^2).$ very good
- One is most interested in its thermodynamic limit $\beta(u; \infty)$.
- \bullet In general,

$$|\beta(u; N) - \beta(u; \infty)| \gg O(1/N^2)$$
. exact, but finite-size effect

• Therefore,

$$|\beta_{\text{our formula}}(u; N) - \beta(u; \infty)| \gg O(1/N^2)$$
. rather poor

Even better formula for $\beta(u;\infty)$

Consider C identical copies of the N-site system. We denote quantities of this CN-site system by tilde;

$$\begin{split} &|\tilde{\psi}_0\rangle \equiv |\psi_0\rangle^{\otimes C}, \\ &|\tilde{\psi}_k\rangle \propto (l-\tilde{h})^{Ck}|\tilde{\psi}_0\rangle, \\ &\tilde{h} \equiv (\hat{H} \otimes \hat{1}^{\otimes (C-1)} + \hat{1} \otimes \hat{H} \otimes \hat{1}^{\otimes (C-2)} + \dots + \hat{1}^{\otimes (C-1)} \otimes \hat{H})/CN. \end{split}$$

Taking the limit of $C \to \infty$, we have

$$\tilde{u}_{\kappa}^{*} = \tilde{u}_{\kappa}^{\bullet} + O(1/N^{2}),$$

$$\tilde{u}_{\kappa}^{\bullet} \equiv u_{\kappa}^{\bullet} + \frac{\xi_{\kappa}^{\prime\prime\prime\prime} + \kappa/(l - u_{\kappa})^{3}}{2N[\xi_{\kappa}^{\prime\prime\prime} + \kappa/(l - u_{\kappa})^{2}]^{2}}.$$

Substituting $\tilde{u}^{\bullet}_{\kappa}$ for u^*_{κ} , we get

— even better formula for $\beta(u; \infty)$ — $\tilde{\beta}(\tilde{u}^{\bullet}_{\kappa}; \infty) = 2\kappa/(l - \tilde{u}^{\bullet}_{\kappa}) + O(1/N^2).$

Entropy density

Since $\beta = \frac{\partial s}{\partial u}$, integration of $\beta(u; N), \beta(u; \infty)$ gives $s(u; N), s(u; \infty)$.

By generalizing Simpson's rule, we have

formula for entropy density
$$- s(u_{2p}) - s(u_{2q}) = \sum_{\ell=p}^{q-1} v(u_{2\ell}^{\bullet}, u_{2\ell+1}^{\bullet}, u_{2\ell+2}^{\bullet}) + O(\frac{1}{N^2}).$$

Here,

$$\begin{split} u &= (u; N) \text{ or } (u; \infty), \\ p, q &= \text{ integers} \\ v(x, y, z) &\equiv \frac{(x - z)\{\beta(x) + \beta(z)\}}{2} \\ -\frac{(x - z)^2 [x\{\beta(z) - \beta(y)\} + y\{\beta(x) - \beta(z)\} + z\{\beta(y) - \beta(x)\}]}{6(x - y)(y - z)}. \end{split}$$

Remark

We have also developed another method of calculating s, in which g(u; N) is directly evaluated from the inner products of different series of TPQs. (S. Sugiura and A. Shimizu, Proc. Meeting of Phys. Soc. Jpn. 2011, paper number 23aGA-6.)

Summary of our formulation

Take an arbitrary basis set of the whole Hilberet space.

Superpose the basis vectors with random complex numbers.

 $\rightarrow\,$ a random vector in the whole Hilberet space.

Multiply $(l - \hat{h})$ iteratively.

- $\rightarrow~$ a new class of TPQs
- $\rightarrow\,$ values of all variables of statistical-mechanical interest.

Application to numerical computation

Purpose: demonstrate that our formalism does work well.

To give evidences, we need to apply our method to models such that

- rigorous results are known at finite temperature.
- \bullet results should be known for many quantities

(magnetization as a function of the magnetic field, correlation functions, temperature as a function of the energy density,)

There are only a few models that meet this purpose!

The Heisenberg chain is one of such a few models.

$$\hat{H} = \frac{J}{4} \sum_{i=1}^{N} \left[\hat{\boldsymbol{\sigma}}(i) \cdot \hat{\boldsymbol{\sigma}}(i+1) - h_z \hat{\sigma}_z(i) \right]$$

Here, J = -1 (ferromagnetic) or J = 1 (antiferromagnetic).

Magnetization vs. magnetic field (J = -1)

Solid lines: exact results for $N \to \infty$ for various values of the energy density u. (H. Nakamura and M. Takahashi, JPSJ 63, 2563 (1994)). Circles: our method for N = 24 (those for N = 4-20 are also shown for u = -0.3J).

Correlation function vs. distance $(J = +1 \text{ and } h_z = 0)$

Solid lines: exact results for $N \to \infty$ for various values of the energy density u. (J. Sato *et al*, Phys. Rev. Lett **106**, 257201 (2011)). Circles: our method for N = 24. Left inset: N = 16-24 at j = 2 for u = -0.36J. Right inset: $\phi(j)$ at finite h at $T \simeq 0.45J$.

Temperature vs. energy density (J = +1)

Solid lines: exact results for $N \to \infty$ for various values of a magnetic field h_z . (K. Sakai, private communication). Circles and diamonds: our method for N = 24. Inset: $1/\tilde{\beta}(u; \infty)$ for N = 8-24.

Our method is effective over a wide range of ${\cal T}$

Good results over a wide range of T, from $T \ll J$ to $T \gg J$.

Reason:

$$\mathbf{P}\Big(\Big|\langle\psi_k|\hat{A}|\psi_k\rangle - \mathrm{Tr}[\hat{\rho}_k\hat{A}]\Big| \ge \epsilon\Big) \le \frac{\|\hat{A}\|^2 r_k(e_{\min};N)}{\epsilon^2 r_k(u_{\kappa}^*;N)}$$

is exponentially small as long as s (and hence T) is finite of O(1).

Practical computations with finite N: $T (= 1/\tilde{\beta}(u_{\kappa}^{\bullet}; \infty))$ can be lowered as long as $\frac{r_k(e_{\min}; N)}{r_k(u_{\kappa}^*; N)} \ll 1.$

Comparizon with other numerical methods

$\mathbf{Finite} \ T$

- \rightarrow exponentially large number of states in $\mathcal{E}_{E,N}$.
- \rightarrow computation of eigenstates in $\mathcal{E}_{E,N}$ is pretty hard.
- \rightarrow our method takes full advantage of such a large number of states!
- $\rightarrow\,$ just a single TPQ gives all quantities of statistical-mechanical interest.

Applicable to

- systems of any spatial dimensions
- frustrated systems
- fermion systems

Computational resources \ll those of the diagonalization.

of non-vanishing elements of $\hat{H} = O(N2^N)$ for the Heisenberg model.

- \rightarrow Since k = O(N), the computational time $= O(N^2 2^N)$.
- $\rightarrow~$ Only two hours on a WS to compute all data in the above figures.
- $\rightarrow\,$ Even faster by parallelizing the algorithm, which is quite easy in our method.

Quantum Monte Carlo method

Much faster.

- But, negative sign problem in
- frustrated systems
- fermion systems.

Density-matrix renormalization group method (S. R. White, 1992) Successful for 1d systems.

- Extended to finite temperature.
- But, its effectiveness in two- or more-dimensional systems is not clear yet.

Microcanonical Lanczos method (M. W. Long *et al*, PRB **68**, 235106 (2003)) Tried to obtain not TPQs but eigenstates.

Costs more computational time than ours.

Computing genuine thermodynamic variables seems more difficult than ours.

 \therefore Our method will make it possible to analyze systems which could not be analyzed with other methods.

Summary of Application to numerical computation

- Application to the Heisenberg chain, for which rigorous results are known for
 - magnetization vs. magnetic field
 - correlation function
 - temperature vs. energy density
- Our results agree well with the rigorous results for all these quantities.
- Over a wide temperature range: from $T \ll J$ to $T \gg J$.
- Extremely fast: only two hours on a WS.
- Applicable to
 - systems of any spatial dimensions
 - frustrated systems
 - fermion systems
- Possible to analyze systems which could not be analyzed with other methods.

CONTENTS

- 1. Introduction: Principles of statistical mechanics revisited.
- 2. Thermal Pure Quantum states (TPQs)
- 3. Formulation of statistical mechanics with TPQs
 - (a) Construction of a new class of TPQs
 - (b) Genuine thermodynamics variables
 - (c) Application to numerical computation
- 4. Discussions
 - (a) Treatment of phase transitions
 - (b) Entanglement
 - (c) Other new classes of TPQs
 - (d) What is thermal fluctuation?

Treatment of phase transitions

ex. a first-order transition

Thermodynamics:

 $s(T; \infty)$ is discontinuous at $T = T_{\text{tr}}$. $\rightarrow u(T; \infty)$ is discontinuous at $T = T_{\text{tr}}$. $\rightarrow c = T\partial s/\partial T = \partial u/\partial T$ diverges at $T = T_{\text{tr}}$.

In contrast, $\beta(u; \infty)$ is continuous even at $T = T_{\text{tr}}$. $\rightarrow c = -\beta^2/(\partial\beta/\partial u)_N = \infty$ corresponds to $\beta = \text{constant}$.

Phase transition viewed in the entropy representation

Ref. 清水明「熱力学の基礎」(東大出版会, 2007)

- G(T, P, N) : $T, P, N \nrightarrow$ equilibrium state
- $S(U, V, N) : U, V, N \rightarrow$ equilibrium state

水を1気圧に保ったまま温める

T(u, P) has a plateau

Spin systems

 $V \rightarrow M_z, P \rightarrow h_z$ $u(T, P) \rightarrow u(T, h_z)$: canonical formalism $T(u, P) \rightarrow T(u, h_z)$: our formalism

Canonical formalism

 ${\cal T}$ is an independent variable

- \rightarrow calculate a discontinuous function $u(T; \infty)$.
- \rightarrow calculation is hard around $T = T_{\text{tr}}$.

Our formalism

 \boldsymbol{u} is taken as an independent variable

- \rightarrow calculate $\beta(u; \infty)$, which is continuous even at $T = T_{\text{tr}}$.
- \rightarrow calculation is easy (e.g., interpolation is effecive)
- \rightarrow calculate c from $c = -\beta^2/(\partial\beta/\partial u)_N$.
- $\rightarrow c = \infty$ corresponds to $\beta = \text{constant}$; easily identified!

Our formalism is advantageous to finding phase transitions.

Entanglement

TPQ $|\psi_k\rangle$ and the mixed state $\hat{\rho}_k$ of the corresponding ensemble

- Identical concerning mechanical variables.
- But, completely different with respect to entanglement.

```
Example: T \gg J

\hat{\rho}_k \simeq (1/D)\hat{1} \leftarrow \text{no entanglement.}

|\psi_k\rangle has exponentially large entanglement.

(A. Sugita and AS, JPSJ 74 (2005) 1883).
```

Bipartite entanglement measured by von Neumann entropy

The von Neumann entropy of the subsystem,

$$S_{\rm vN} \equiv -\mathrm{Tr}(\hat{\rho}_n \log_2 \hat{\rho}_n),$$

is a good measure of bipartite entanglement for pure states.

$$S_{\rm vN}$$
 vs. $n \ (J = +1, N = 16, h_z = 0)$

Solid lines: results for different energy densities, $-0.44J \le u \le -0.01J$.

An equilibrium state can be represented either by a TPQ with exponentially large entanglement or by a mixed state with much less entanglement.

Their difference can be detected only by high-order polynomials of local operators, which are not of statistical-mechanical interest. (A. Sugita, 2006)

$\mathbf{c.f.}$ Related arguments:

- A. Sugita and AS, J. Phys. Soc. Jpn. ${\bf 74}$ (2005) 1883.
- AS and T. Morimae, Phys. Rev. Lett. $\mathbf{95}$ (2005) 090401.

Other new classes of TPQs

$$|\psi_k\rangle \propto (l-\hat{h})^k |\psi_0\rangle \longrightarrow |\psi\rangle \propto Q(\hat{h}) |\psi_0\rangle$$

Here, Q(u) is any differentiable real function such that

- $Q(u)^2 g(u; N)$ has a sharp peak.
- Its width vanishes as $N \to \infty$.
- $Q(u)^2 g(u; N)$ outside the peak decays quickly.

One can calculate various quantities as we have done using $|\psi_k\rangle$, e.g.,

$$\beta(u_{\kappa}^*;N) = \frac{2\kappa}{(l-u_{\kappa}^*)} \longrightarrow \beta(u^*;N) = -\frac{2Q'(u^*)}{NQ(u^*)}.$$

What is thermal fluctuation?

See PDF.

Summary

- A new class of TPQs.
- A simple method for constructing them.
- Formulas giving genuine thermodynamic variables.

From a single TPQ, one can calculate all variables of statistical-mechanical interest, including genuine thermodynamic variables, at finite temperature.

What does it imply?

Formulation of Statistical Mechanics Conventional : ensembles and $S = \ln W$ or $F = -T \ln Z$ (and ergodicity) \downarrow New : TPQ and our formula for genuine thermodynamic variables Statistical mechanics based on TPQs