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Fluctuation-Dissipation Theorem (FDT)

linear response function = [ X equilibrium fluctuation
= [ X time correlation in equilibrium

Many experimental evidences for real symmetric parts of response functions
(e.g., Reogy) in the “classical regime” hw < kgT.

Question : Does the FDT really hold in other cases?

Our answer : No, as relations between observed quantities.

e holds only in the above case.

e violated at all w (including w = 0) for real antisymmetric parts (e.g., Re o4y).



Motivation

Nothing moves in Gibbs states.

In the thermal pure quantum states, macrovariables do not move, whereas mi-
crovariables move.

To calculate fluctuation of macrovariables, we must calculate time correlation.

But, when we look at an equilibrium state, macrovariables do move (fluctuate).

[I\/Iy question: What is the quantum state in which macrovariables fluctuate? }

Kyota Fujikura (M1 at that time) got interested in this question.
= He constructed a ‘squeezed equilibrium state’ (shown later).

Such a state should be found, e.g., just atter measurement.

[I\/Iy question: Is it a universal result? }

He answered ves.
= [ was upset because I realized it implies universal violation of FDT!
= Detailed analysis.
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H. Takahashi (J. Phys. Soc. Jpn. 7, 439 (1952))
e derived the FDT for classical systems.

e About its translation to quantum systems:

What’s wrong with derivations of the FDT?

“profound difficulty that every observation disturbs the system.”
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What’s wrong with derivations of the FDT? (continnued)

Callen and Welton (1951) and Kubo (1957)
e “Derived” the FDT for quantum systems from the Schrodinger equation.
e Neglected the disturbances by measurements.

Nevertheless, ‘Kubo formula’ is often regarded as a proof of the FDT.

-~

Kubo: linear response function = [ X canonical time correlation™
disturbance — ||? disturbance — ||?
B X time correlation in equilibrium

FDT: linear response function

observed one observed one
\_

* canonical time correlation:

o Bor
(XY ())eq = /O (M Xe MY (1)) oqd\

e e



What’s wrong with derivations of the FDT? (continnued)

Question: Are macrovariables so affected by quantum disturbance?

Our answer:

e No, when response is measured.
= Kubo formula may be correct as a recipe to obtain response functions.

e Yes, when fluctuarion is measured.

= canonical time correlation # observed time correlation.

4 N
Kubo: linear response function = [ X canonical time correlation
disturbance -4 || disturbance — }
FDT: linear response function # [ X time correlation in equilibrium
observed one observed one
N J

FDT is violated as relations between observed quantities. I




Contents

1. What’s wrong with derivations of the FDT"
2. Assumptions

(a) on the system and its equilibrium states

(b) on measurements
3. Measurement of time correlation
4. Violation of FDT
5. Experiments on violation
6. Discussions
7. Summary

8. Additional comments (if time allows)



Assumptions on the system and its equilibrium states

d-dimensional macroscopic system (d = 1,2,3, -+ ) of size N (e.g., # of spins)
e Equilibrium state of temperature T' (= 1/3)
thermal pure quantum state |3) (same results as the Gibbs state)
S. Sugiura ans AS, PRL 108, 240401 (2012); PRL 111, 010401 (2013).
(+)eq={B]-16)
e Assumption
Correlation between local observables decays faster than 1/r9F€ (e > 0).
& holds generally, except at citical points.
= For all additive observable A (= > . same local observable),

0Acq = \/<(A121)2>eq = O(VN).

AA = A — (A); throughout this talk A denotes deviation from the equilibrium value.

e Additional reasonable assumptions
= Quantum Central Limit Theorem (D. Goderis and P. Vets (1939); T. Matsui (2002).)

& We do not write  lim  explicitly, except when we want to stress it.
NV —o0
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Assumptions on measurements

If a violent detector,

= completely destroys the state by the 1st measurement
= meaningless result for the 2nd measurement

= wrong result for the correlation

To measure the time correlation correctly, “ideal” detectors should be used. I

Classical systems
ideal detector = a detector that does not disturb the state at all.

Quantum systems

Such a detector is impossible!
= Use a detector that simulates the classical ideal one as closely as possible.
“quasiclassical measurement”

To examine the validity of the FDT in quantum systems, we must assume
quasiclassical measurements.




Assumptions on measurements (continued)

quasiclassical measurement should have a moderate magnitude of error:
® 0 Aoy \( = disturbance ' = 0 Aeqrr should not be too small.

We require

0 Ay = €0Aeq (€ : asmall positive onstant).

& Our results hold also for larger ¢.

Since § Aeq = O(V'N),
5 Aerr = O(VN).

To formulate measurements of equilibrium fluctuations, use
0= A/VN

= 5aeq — O<1)7 5@@1“1“ — O(l)




Assumptions on measurements (continued)

General framework of quantum measurement (adapted to our problem)
Pre-measurement state = |¢) (uniform macroscopically)

Measurement of an additive observable A — outcome A, (real valued variable)
& VA >0 = Ae is not necessarily one of eigenvalues.
& ae = Ao/ N can be regarded as a continuous variable.

Probability density of getting ae :
plae) = (Y| EaJ0))

E,, : probability operator (Hermitian, positive semidefinite, integral = 1)

Eq, can be decomposed as
an — M;.Ma.

Ma. . measurement operator (not unique for a given Ea.)
Post-measurement state = Ma.‘l@

v/ p(ae)



Assumptions on measurements (continued)

Qe . outcome, p(a.) — <¢‘EACL.‘¢>7 Ea. — MCJL[.MCL.

- Definiton: quasiclassical measurement of additive observables

(i) unbiased : ae = (G)eq (- = average over many runs of experiments)
*.» Otherwise, the FDT would look more violated.

(ii) For |58), psnitteq(Aae) = plae) converges as N — o0.

= e.g., measurement error 0 Aeryr = €0 Aeq, as required.

iii) My, is minimally disturbing among E,, = MCJ{. M,, = Ng. Ny =+

A

:> MCL. — Ea‘

iv) homogeneous, i.e., Ea. depends on a and ae only through a — ae.
= e.g., 0aerr = independent of ae.
From (i)-(iv), Ma, = f(a — ae), where f(z) > 0.

(v) f(x) behaves well enough.

e.g., it vanishes quickly as |x| — oo (see paper for details)
N




Assumptions on measurements (continued)

Roughly speaking, quasiclassical measeurment is
e unbiased
e homogeneous
e minimally-disturbing
e moderate magnitudes of error (small enough to measure fluctuations, but not

too small in order to avoid strong disturbances.)

ex. Gaussian measurement operator

f 1 72 \
flx) = ra?) 1A eXp |~ |, w= O(1) > 0.
N A 1 i (& o a.)Q_
Ma, = (@ = ae) = (27Tw2)1/4 R R ’

Saeyr = w = O(1) (6 Aery = wVN = O(VN)).
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Measurement of time correlation

-

t =07 : equilibrium state = |8) (thermal pure quantum state)
\L A
t =0 : measurement of A = avV/ N = outcome Ae = aeV N
1
post-measurement state = |5; ae) = fla— ae)|B)
p(ae)

J free evolution
t>0 : e_th/hW;a.)
measurement of A (or another additive operator B) = outcome

U From the two outcomes ...

Obtain : correlation of A(0) and A(t) (or B(t))

e st measurement should be quasiclassical (to minimize disturbance)

e 2nd measurement can be either quasiclassical or error-less.

(Because its post-measurement state will not be measured.)



Post-measurement state of 1st measurement

: t =0 : measurement of A = av/N = outcome Ae = aeV N :
> post-measurement state = |5; ae) = : f(a — ae)|f)
] p(ae) )
Gaussian f (- )agy = (5; ael| - |5; ae), 6 gq = §Acq/ VN, Ao = ae — {(@)eq.
: : daiy |
(@) e — (G)eq = 5agq T oal Aae : shifted toward the outcome
. . 9 _ 5@gq _ 9 .
(6 —(A)ay) VYae = |1 — Sa2, + oad, Oag, : squeezed along a

measurement
ol

Y




Post-measurement state of 1st measurement (continued)
For another additive operator B=0/N ,
1 N Lrr 7
o/ [t o 5a§q + daz,, da2,,

squeezing squeezing is disturbed

All the above quantities are O(equilibrium fluctuations)
= |5; ae) is macroscopically identical to |3) (equilibrium state).

/\ — — ‘Z\ - “We are macroscopically identical to |3).”

measurement

] T A squeezed equilibrium state

A,

general f

Similar TGSUltS, which depend on f (see K. Fujikura and AS, 2016)

N

e Disturbances on additive operators A,é, ... by quasiclassical measure-

ments are O(v/N).

e The post-measurement state |5; ae) is a ‘squeezed equilibrium state’.




2nd measurement

4 N N

t =0 : measurement of A =av N = outcome A¢ = eV N
post-measurement state = |[; de)

J free evolution
t>0 : e_th/h\ﬁ;aJ

> measurement of A (or another additive operator B) = outcome
NS J

Gaussian f
For any additive observable B = B\/N

(Ab(1))ay = O(t)(z{Aa, Ab(1)})

N

Ade
e
. 5a§q + daz,,

Here, @(t) = step function (vanishes for t < O)

(%{)A(, Y(t)}>eq = <%()A(}A/(t) + f/(t)f())eq . symmetrized time correlation
general f

(Ab(t))q, = @(t){%{ﬁ&,A[S(t)})eq- (Z;(SL:))) . depends on f




Obtained time correlation

t =0 : measurement of A = a4V N = outcome Ag = aeV N
J free evolution
t >0 : measurement of B = (outcome) = (b(t))q,

U From the two outcomes ...

» Obtain : correlation of A(0) and B(t)

Correlation between Aae and (Ab(t))q, -
Fort >0, Zp,(t) = Aae(Ab(t))q,

/ Ade(Ab(1))a, plae)dae
(B8, 800} [
(H8a, 800} [
<%{A&,A8(t)}>eq for all f.

Ade - [—p'(ae)] dae
)

p(ae)dae



Obtained time correlation (continued)

Universal result:

Fort >0, Zpa(t) = (3{Aa, Ab(t)})eq for all f

If we combine the case where the role of A and B is interchanged,
=, (t) = correlation of @ and b(t)
= <%{A&, Ab(t)})eq for all t and all f.

& Throughout this talk, “ =~ 7 denotes some extension to all ¢.

When equilibrium fluctuations of macrovariables are measured in an ideal
way that simulates classical ideal measurements as closely as possible, the
symmetrized time correlation is always obtained (among many quantum cor-
relations that reduce to the same classical correlation as h — 0).
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Violation of FDT

Linear response of an additive observable B to an external field F (1) :

By (Bl [
% — < ]\>[eq = / Oy, (t —tYF()dt'  (Py,(t) : response function).
— OO

When F'(t) interacts the system via
Hei(t) = —F(#t)C  (C : an additive observable of the system),

Kubo (1957) showed

{ Kubo formula : &y, (t) = O(1) B{Aa; A[A9(?5)>eq

O(t) = step function <= causality

a=A/VN, b= B/VN

. d - 1 .~ . A
A= EC@) - = z’_h[c’ H| : velocity of C,
o 1 [P . )
(XY (t))eq = 3 (eM X Te= M Y (t))eqdA : canonical time correlation.
0



Violation of FDT (continued)

{ Kubo formula :  $p,(t) = O(t) B(Aa; AB(t)}eq J
Some necessary conditions :

e H should be taken in such a way that (Aa; AIS(t»eq converges.

. (Ad; Ab(t))eq = 0.

e This implies, e.g., [A, H] # 0 and [B, H] # 0.

e Consistency with equilibrium statistical mechanics:
O
6/0 (C'/N; B(t)/N}eqe_Etdt = (C/N)eq{B/N)eq-

A consequence: In general, Kubo formula is tnapplicable to integrable systems.

[We henceforth assume that the above conditions are all satisfied. ]

& Do not write and explicitly, except when we want to stress it.



Violation of FDT (continued)

Kubo neglected disturbances by measurements.
Our results: Even if measurements are “ideal” (i.e., quasiclassical),

disturbances on additive observables = O(\/N ).

Measurement of temporal fluctuation :

(Aa; Ab(t))eq (@ =A/VN, b(t) = B(t)/V'N)
Ab=O(VN)/VN =0(1).

disturbances on Aa and

For measurements of temporal fluctuations, disturbances are significant. I

In fact, observed time correlation = <%{A&, AB(t)})eq #= (Aa; A@(t))eq.




Violation of FDT (continued)

Measurement of response function :

> 5 t
% - <B;\>[eq — / N Oy, (t — ) F(t)dt’

There is a method with which disturbances are completely irrelevant.
But, in ordinary experiments, one will perform multi-time measurements.
Do they agree with each other?

disturbance on B/N = O(V'N)/N = O(1/vV/N) — 0.

For measurements of response functions, disturbances are negligible. I

= The result agrees with that of the disturbance-irrelevant method.




Violation of FDT (continued)

s N
Kubo:  ®p,(t) = O(t)B(Ad; Ab(t))eq
disturbance - || } < disturbance
FDT: &p,(t) # [ x time correlation in equilibrium
N J

e Kubo formula may be correct™ as a recipe to obtain ®p,,.

o But, observed time correlation = (${Aa, Ab(t)Veq # (Aa; Ab())eq

FDT is violated as relations between observed quantities. I

* For other possible problems of Kubo formula, see, e.g., AS and H. Kato, Springer Lecture
Notes in Physics, 54 (2000) pp.3-22. arXiv:cond-mat/9911333.

But, many experiments have confirmed FDT'...”
To resolve this point, we must analyze FDT' in the frequency domain!



Violation of FDT at w

[n experiments, one normally measures (generalized) admittance :

OO .
Yoa(w) = / By t) Lt
0

o0 A~ .
_ / B(AG: Ab(t))eq et
0
The lower limit of integration comes from

causality : Py, (t) =0 fort < 0.

This is crucial because
m A .
Valo) = [ B8 AN e
— OO0

contradicts with experiments:
e Ree(w) = ¢y 777 = No dielectric material???
e lmo(w) =077 = No phase shift???

& Unfortunately, FDT is sometimes stated in terms of y in the literature.



Violation of FDT at w (continued)

Fourier transform of time correlation:

Su@) = [ (500,850, <t

Su) = [ (A 80O eq et

— 00
Both are measurable.
= Which should be compared with the observed admittance xp,(w)?

In the classical limit A — 0, we will show
Xpa(W) = B8Sp,(w) holds for all w,
Xia(w) = BSy,(w) violated partially even at w = 0
= superficial violation coming from inappropriate comparison!

e FDT in this talk

Relation between the observed admittance and observed fluctuation,

L Xpa(W) = BSpa(w).

We will inspect whether it holds in quantum systems.



Violation of FDT at w (continued)

symmetric/antisymmetric parts

Xba(w) = response of B to Fe™ ™! that couples to C’ (where A = dC J/dt).
Xop(w) = response of A to Fe ™t that couples to D (where B =dD /dt).

If the system has the time-reversal symmetry,

Xpa (W) = €q€pXap(w) : reciprocal relation
€a, € © parities (= £1) of & and b under the time reversal.
To make this symmetry manifest, we introduce

Yoo (@) = [Xpa(w)ExXap(w)]/2,

called symmetric/antisymmetric parts.

If the system has the time-reversal symmetry (i.e., if magnetic field h = 0),
either one of Xli(w) vanishes for all w, depending on the sign of €4€p.

ex. Hall conductivity o4y (w) vanishes when h = 0.



Violation of FDT at w (continued)

Similarly, we define

Then we can show ....



Violation of FDT at w (continued)

Relation between observed admittance and observed fluctuation
Rex; (w)=BReS, (w) w)/1g(w)
Rexb_a(w)zﬁReS +5/

o

dw’

—|1- %} iS50l S

and similarly for the imaginary parts.

Bhw (g@>w{1 (hw < kgT)

To(w) = 22 ot
slw) = =5 coth { =5 Bhw/2  (hw > kpT)

Does FDT Xfa(w) — BSi(w) hold?

For real symmetric part Re Xgra(w)
e holds in the ‘classical regime’ hw << kpT'.
e violated for hw 2 kT

For real antisymmetric part Re x, (w)

e violated at all w, even in the classical regime hw << kgT.




Violation of FDT at w (continued)

Example: electrical conductivity tensor in B = (0,0, B).

m .
o (W) = / G 3u(®))eq €tdt  : observed conductivity (admittance)
0

m .
Suv(w) = / <%{jy,ju(t)}>eq e“dt - observed fluctuation
0
Symmetric part (= diagonal conductivity)

Re Syz(w) 52Re Ser(w)  (hw < kgT) : FDT holds
]5<w) - B Re Spz(w)  (hw > kgT') : violated
W

(2 Callen and Welton (1951))

Reoyr(w) =

Antisymmetric part (= Hall conductivity)

FDT is violated at all w, even at w = 0 because
dw’

>~ P L ). .
02y(0) = BS4y(0) + /_OO = [1 — [ﬁ(wl)] 1Sy (W) o violated

odd even odd
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Experiments on violation

For Re oz (w) at hw < kgT

our result (taking account of disturbance by quasiclassical measurement)
= previous results for quantum systems (Callen-Welton, Nakano, Kubo)
= previous results for classical systems (Nyquist, Takahashi, Green).

. FDT is relatively insensitive to the choice of measuring apparatuses for the
real symmetric part in the classical regime hw < kgT'.

Many experimental evidences for this case, although conventional measuring
apparatuses (not necessarily quasiclassical!) were used. (Johnson, ...).



Experiments on violation (continued)

For other cases such as
e Reoyr(w) at hw 2 kpT
e Reoyy(w) at all w (including w = 0)

Our results predict the violation.
= (Greater care is necessary when inspecting FDT.

If measurement is not quaiclassical, FDT would look violated more greatly.
= One could not tell whether the FDT is really violated.

To inspect FDT in this case, quasiclassical measurements should be made. I

Notice: Conventional measurements are not necessarily quasiclassical.

ex. measurement of electromagnetic fields (R. J. Glauber, PR 130, 2529 (1963))
=- conventional photodetectors destroy the state by absorbing photons.
= cannot measure, e.g., the zero-point fluctuation

= not quasiclassical

= FDT looks violated more greatly:.




Experiments on violation (continued)

Experiments using quasiclassical measurements

e 0. (w): Koch et al. (1982) used the heterodyning technique ~ quasiclassical

Resisitiviy-shunted Josephson Junction.
Re Syg(w) =~ Ig(w)kpT Re 0y (w)

FDT is violated with increasing w.
R. H. Koch et al., PR B 26, 74 (1982).

S; W) (A% Hz)

1 AN | 1 \ 1
10' 10" 0'2
v (Hz)

® 0;y(w) : Comparison with Sy (w) not reported = experiments are welcome!
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The violation is a genuine quantum effect

Antisymmetric part (such as ogy):
FDT is violated even in the “classical regime” hw < kgT'. Why?

Two ways to reach the“classical regime”

1. hypothetical limit: A — 0
= system becomes classical

= violation disappears.

2. physical limit: w — 0 while keeping h constant

= violation for antisymmetric parts.

Violation of the FDT is a genuine quantum effect, which appears on the
macroscopic scale.




Relaxation of squeezed equilibrium state

t =07 : equilibrium state = |8) (thermal pure quantum state)
' 1
t =0 : post-measurement state = |; ae) = f(a — ae)|B)
p(ae)
J. free evolution squeezed equilibrium state

t>0 : e_th/hW;a.)

54,
- >
(4)




Relaxation of squeezed equilibrium state (continued)

Gaussian f (similar results for general f)

: ({2, Ab(1)})eq

[;t — b — ®
((t))ae — (b)eq 5a§q+5a§n a
; ; (5{0a, b)) | (gla, b)),
b(t) — (b(t))ae)?)ae — ObZ; = —— 2
(60) = (0 — 0y = g s P
e Evolve with increasing ¢, unlike in |8) or e H /7.
o Go to zero if (3{Aa, Ab(t)})eq — 0 and ([a, b(t)])eq — 0.
A )
Aq
\
(4)

time




Relaxation of squeezed equilibrium state (continued)

The squeezed equilibrium state is a time-evolving state, in which macrovari-
ables fluctuate and relax, unlike the Gibbs or thermal pure quantum state.

e Realized during quasiclassical measurements of equilibrium fluctuations.

e After the relaxation, one cannot distinguish |5; ae) from |5) by macroscopic
observations. = “thermalization”

A

Aq
\

(4)

eq

time




Summary
e What is observed when equilibrium fluctuations are measured in an ideal way
that simulates classical ideal measurements. “quasiclassical measurements”
e symmetrized time correlation is obtained quite generally.
e F'D'T is violated as a relation between observed quantities.

e Real symmetric parts of response functions: FDT is violated at hw 2 kgT.

= A previous experiment on Re o, (w) reported an evidence.

e Real antisymmetric parts: FDT is violated at all frequencies, even at w = 0.

= No experiments reported. Comprison of oy(0) with Sg;(0) interesting.
e Violation is a genuine quantum effect, which survives on a macroscopic scale.
e Post-measurement state is a ‘squeezed equilibrium state.’

e It is a time-evolving state, in which macrovariables fluctuate and relax, unlike
the Gibbs or thermal pure quantum state.

= realized during quasiclassical measurements of equilibrium fluctuations.
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Order of various limits and integral in Kubo formula

(W) = /O lim  B(AG: Ab())eq e“dt )

NxV—o0
Not useful for studying properties of xp,(w).
Assuming the necessary conditons for the Kubo formula, we may rewrite (1) as

®.0
- - Ad wt—et
alt2) = lim /O lim B Ab(E)eq € (2)
The recurrence time of (Aa; A@(t))eq increases with increasing V. Hence,
o
- - . AG wi—et
Vle) = lim i /O B(AG: Ab(t))eq €™~V dt. (3)

V' < 400 in this time integral =- useful for studying properties of xp,(w).
ex. One can express the integral using the energy eigenvalues and eigenstates.

Warning: lim should not be taken beofore  lim .
e\,0 NxV—o0

Otherwise, unphysical results would be obtained (often found in the literature).
ex. magnetic susceptibility: Xxubo < X5 < XT
Prof. Ken-ichi Asano said “Any ridiculous results can be derived.”



Superficial violation of FDT in classical systems

Relations between yy,, and Sp, were previously known:

Re x;,(w) = BRe Sy (w)/[215(w )]

— /_
ReXpq(w 5/0000 —w [5 ) Sba(w>27r'

As A — 0 they reduce to
Re g, (w) = B Re 8y, (w)/2,
_ >~ P .,y
Rex,,(w) =7 - Im S, (w') o

FDT looks violated for Re x; (w) even in the classical limit; one would expect

Rex,,(w) = B Re %(w)/z
& Actually, rh.s. = 0.



Multi-time measurements

time 0 T - itk

observable AV Al ... AK

measurement operator|  f i - fx
outcome \/Nag \/Nal oo \/Naf(

+ZFz(%[dj(tj)a&l(tz)beq(gz[ (1), 6" (tp)eq (0 < <K),

where dals = fx2|fi7 ) |2dz, F; = —4ff” filz)dr (= l/w for Gaus-
sian).
When 3 = 0 and £ > 1, the backaction term is absent,

AadAak = E{AaY, Aak(t)})eq for ty, > 0.

Analogous to the case of measuring twice, although other measurements may
be performed for 0 < ¢t < ¢;..




Quantum violation of Onsager’s regression hypothesis

L. Onsager (1931):
“The average regression of equilibrium fluctuations will obey the same laws as

the corresponding macroscopic irreversible processes.” (classical systems)
Classical systems : H. Takahashi (1952) : “holds.”

Quantum systems: contradictory claims from different assumptions.

e “violated, but something must be wrong” (assumed symmetrized time correlation)
R. Kubo and M. Yokota (1955)
e “holds” (assumed a local equilibrium state for the state during fluctuation)

S. Nakajima (1956), R. Kubo, M. Yokota and S. Nakajima (1957).

e “violated” (assumed symmetrized time correlation)

P. Talkner (1986), G. W. Ford and R. F. O’Connel (1996)

We have proved: symmetrized time correlation is always obtained by quasiclas-
sical measurements.

Onsager’s hypothesis cannot be valid in quantum systems as relations between
observed quantities.




Why quantum effects survive on the macroscopic scale?
Additive operators = O(N):
A=Yém), B=Y
r r
Their densities tend to commute as N — oo;
1
[A/N, B/N] = ~ Z — O(N) =0

= looks like a classmal system
But, their fluctuations do not;
[AA/VN,AB/VN] = [Aa, Ab] = O(1)
= quantum effects survive even for large N
Although [Aa, Ab] = O(1) x H, a typical example shows

h X microscopic parameters

FDT violation ~ admittance X : :
other microscopic parameters

~ admittance X not small = detectable enough!



Different results for equilibrium fluctuation (time correlation)

FT of (jz(0)72(t))eq

FT of (52(0)7y(t))eq

Nyquist kBTam(O)e 527?61 ; not discussed
PR 32, 110 (1928) FDT holds at low w

Callen-Welton | kpT'024(0)Ig(w) not discussed
PR 83, 34 (1951) FDT holds at low w

Kubo kT 0 pp(w) kpToyy(w)
JPSJ 12, 570 (1957) FDT holds at all w FDT holds at all w
Our results kpToga(w)g(w) kT ogy(w)

FDT holds at low w

O

[5 (w’)
FDT violated at all w

P [1— : ]igfcy(wl)

/

dw’

2T




A rough estimate of magnitude of violation

Drude model in B = (0,0, B).

( ) 1 —wwT
orr(W) =0
o 0(1 — w7 )2 + (weT)?
() WeT
Ory(W) = —0
vy 0(1 — iw7)2 + (wCT)2
ner eB
o0 = ) We = —
M M
B du® P eq = Le M sin(wet) = Sny(w) = = Imoy(w)
) ]VL],LL €q — 7_6 SN We gij — 5 mggij .

0.0

B 1 weTdw /2
Ua:ym) - 5Sxy<0) = 4oy /_OO [1 o ]ﬁ(w)] [1 4 (wCT)2 _ (w7)2]2 + 4(w7')2

ex. When wer < 1 and kT ~ h/T,
hwe

723(0) = B (0) ~ o077,
~ og when Awe ~ kT




Phenomenology of Thermalization (macroscopic)

Equilibrium state: all additive variables take macroscopically definite values, i.e,
fluctuations of additive variables = o(N).
Non-equilibrium state:
[value of some additive variable — its equilibrium value| = O(N) > 0.
Relaxation from a non-equilibrium state:
values of all additive variables — their (new) equilibrium values
Relaxation process:

non-linear non-eq. regime — linear non-eq. regime — equilibrium

7 (relaxation time) = NI, + T,

- )
Relaxation (thermalization) time

= 7 of an additive abservable of slowest relaxation

> 71, of such an observable




Thermalization in classical systems

An RC circuit, capaciter charged at t =0

e Phenomenologocal theory
Relaxation with time constant 7 = RC.

= admittance (R + i/wC) ™! gives the time scale of thermalization

e Microscopic theory

A sufficient condition for thermalization is
mixing property : (X (0)Y(¢))eq — 0 as t — o0
= time correlation (X (0)Y (%))eq gives the time scale of thermalization

e Linear response theory

admittance = Fourier transform of (X (0)Y (¢))eq/kpT

These are consistent with each other in classical systems.

[ Are they consistent in quantum systems?” = No, according to this talk }




Some consequences for thermalization

e Phenomenology should be correct on a macroscopic scale, so

relaxation (thermalization) time from a nonequilibrium state
= 7 of an additive abservable of slowest relaxation
> 17, of such an observable
= determined by admittance

e After equilibirum is reached,

relaxation time of fluctuation = relaxation time of symTC
# relaxation time determined by admittance

e For both relaxation times,

relaxation times = material-dependent time scales

h

# Boltzmann time kB—T



Probability density of getting outcome aq

4 N

t =07 : equilibrium state = |8) (thermal pure quantum state)

d
> t =0 : measurement of A = vV N = outcome Ae = a.\/ﬁ )

o
Gaussian f

dazy =w?=0(1)  (ie, dAeqr = O(VN)),

1 1
p(a”) — 1/2 CXPp (Aa.)Q

2m(Sagy + dag,)]

_2(5agq + daz,,)

where 5agq = §Aeq/V N, and Ade = ae — (@)eq.

general f

Similar results, which depend on f.

(see K. Fujikura and AS, 2016)

Width ot p(a.) ~ 50%(1 + 5agr1“



Definition of equilibrium states in this talk
AS, Principles of Thermodynamaics, Univ. Tokyo Press, 2007

(i) Isolated system

Consider an isolated macroscopic system. After a sufficiently long time, it
evoloves to a state s.t. all macroscopic variable is macroscopically constant;

variation

> 0 in the thermodynamic limit (t.d.1).
value

Such a state is called a (thermal) equilibrium state.

(ii) Non-isolated system (subsystem)

Consider a macroscopic system that is not isolated from other systems. Sup-
pose that its state is macroscopically identical to an equilibrium state in the
above sense, i.e., for all macroscopic variable

1ts value
e s 1 in the t.d.L..

its value in an equilibrium state (of an isolated system)

Such a state is also called a (thermal) equilibrium state.

& Other definitions = violation of many theorems of thermodynamics



