

Fig. 3. Current through film vs applied voltage. Relative light intensities and corresponding film resistances are as shown. Intercepts on the ordinate and the abscissa are the short-circuit current and the open-circuit voltage, respectively.

with the space charge layers at grain boundaries. Whatever their location, however, the crystallographic ordering process which produces the additive arrangement of these elements is a major factor yet to be explained.

† This work was supported by the Evans Signal Corps Laboratories.

L. Pensak, Phys. Rev. 109, 601 (1958), preceding letter.
M. B. Prince, J. Appl. Phys. 26, 534 (1955).
J. J. Loferski, J. Appl. Phys. 27, 777 (1956).

New Phenomenon in Narrow Germanium p-n Junctions

LEO ESAKI

Tokyo Tsushin Kogyo, Limited, Shinagawa, Tokyo, Japan (Received October 11, 1957)

N the course of studying the internal field emission in very narrow germanium p-n junctions, we have found an anomalous current-voltage characteristic in the forward direction, as illustrated in Fig. 1. In this p-n junction, which was fabricated by alloying techniques, the acceptor concentration in the p-type side and the donor concentration in the *n*-type side are, respectively, 1.6×10¹⁹ cm⁻³ and approximately 10¹⁹ cm⁻³. The maximum of the curve was observed at 0.035±0.005 volt in every specimen. It was ascertained that the specimens were reproducibly produced and showed a general behavior relatively independent of temperature. In the range over 0.3 volt in the forward direction, the current-voltage curve could be fitted almost quantitatively by the well-known relation: $I = I_s [\exp(qV/kT) - 1]$. This junction diode is more conductive in the reverse direction than in the forward direction. In this respect it agrees with the rectification direction predicted by Wilson, Frenkel, and Joffe, and Nordheim 25 years ago.1

The energy diagram of Fig. 2 is proposed for the case

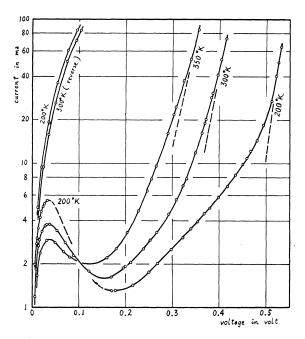


Fig. 1. Semilog plots of the measured current-voltage characteristic at 200°K, 300°K, and 350°K.

in which no voltage is applied to the junction, though the band scheme may be, at best, a poor approximation for such a narrow junction. (The remarkably large values observed in the capacity measurement indicated that the junction width is approximately 150 angstroms, which results in a built-in field as large as 5×10⁵ volts/cm.)2 In the reverse direction and even in the forward direction for low voltage, the current might be carried only by internal field emission and the possibility of an avalanche might be completely excluded because the breakdown occurs at much less than the threshold voltage for electron-hole pair production.³ Owing to the large density of electrons and holes, their distribution should become degenerate; the Fermi level in the p-type side will be 0.06 ev below the top of the valence band, E_v , and that in the *n*-type side will lie above the bottom of the conduction band, E_c. At zero bias, the field emission current $I_{v\rightarrow c}$ from the valence band to the empty state of the conduction band and the current

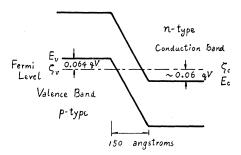


Fig. 2. Energy diagram of the p-n junction at 300°K and no bias voltage.