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In nonequilibrium statistical mechanics,

• quantum measurement theory

• requirement of micro-macro consistency

have been implicitly used.

This talk� �
•Where they are used.

• They actually play crucial roles.

• Recent results on universal properties of response functions of nonequilib-

rium steady states (NESSs).� �
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1. linear nonequilibrium regime — Kubo formula revisited

Derivation by R. Kubo (1957)

• For t < t0 (later taken as −∞), the target system contacts with a reservoir;

ρ̂(t0) = ρ̂eq = (1/Z) exp[−βĤ ]

• Detach the reservoir at t = t0

⇒ the target system becomes an isolated system.

• For t > t0, apply a weak external field f (t) adiabatically, so

i~
∂

∂t
ρ̂(t) =

[
Ĥ − B̂f (t), ρ̂(t)

]
: von Neumann eq.

• To the linear order in f (t), an observable A of interest changes by

∆A(t) ≡ Tr[ρ̂(t)Â]− Tr[ρ̂eqÂ]

=

∫ t

t0

1

i~
Tr

(
ρ̂eq

[
B̂, Ă(t− t′)

])
f (t′)dt′,

Here,

Ă(τ ) ≡ e
i
~Ĥτ Â e

−i
~ Ĥτ .



• On the other hand, macroscopic physics says

∆A(t) =

∫ t

t0

Φeq(t− t′)f (t′)dt′,

which defines the linear response function of equilibrium states Φeq.

• By comparing the two eqs., one obtains a microscopic expression of Φeq;

Φeq(τ ) =
1

i~
Tr

(
ρ̂eq

[
B̂, Ă(τ )

])
• Using ρ̂eq = (1/Z) exp[−βĤ ], one can recast the RHS as the canonical

correlation;

Φeq(τ ) =
1

kBT
〈 ˙̆B(0); Ă(τ )〉eq: Kubo formula

• The response function (in the linear nonequilibrium regime) is related to

‘fluctuation’ in the equilibrium state : fluctuation-dissipation relation



Reconsideration — 1
� �
Q1. Does the canonical correlation represent fluctuation, i.e., time correlation

of measurement outcomes?� �
In the classical regime kBT � ~ω, the answer is yes (in most cases):

Φeq(τ ) =
1

kBT
〈 ˙̆B(0); Ă(τ )〉eq: canonical correlation (Kubo formula)

[i]
=

1

kBT

〈
˙̆
B(0)Ă(τ ) + Ă(τ )

˙̆
B(0)

2

〉
eq

for kBT � ~ω

: symmetrized time correlation

= FT of fluctuation for kBT � ~ω
→ fluctuation-dissipation relation

[i] Kubo, Toda, Hashitsume, Statistical Physics part II.



In the quantum regime kBT . ~ω, the answer depends on what apparatus you
use. See, e.g., Sec. 4 of K. Koshino and A. Shimizu, Physics Reports 412 (2005) 191.

R. H. Koch, et al., Phys. Rev. B26 (1982) 74.



� �
Q1. Does the canonical correlation represent fluctuation, i.e., time correlation

of measurement outcomes?

A1. In the classical regime, yes. In the quantum regime, yes or no de-

pending on what apparatus you use.� �



Reconsideration — 2

In order to measure

Ξeq(ω) ≡
∫ ∞
0

Φeq(τ )e
iωτdτ,

one has to measure the observable continuously for a long time � 1/ω.
� �
Q2. Then, you cannot use the von Neumann eq., can you? But, it was used

in deriving Kubo formula! (H. Takahashi (1957))� �

This could be resolved by the results on stability of general quantum states of

macroscopic systems by A. Shimizu and T. Miyadera, Phys. Rev. Lett. 89

(2002) 270403.

skip .....



Reconsideration — 3

One obtains the same result also for other statistical ensembles.

ex. canonical ensemble → microcanonical ensemble

ρ̂eq(T, V,N) → ρ̂eq(U, V,N)

(1/Z) exp[−βĤ ] → (1/W )
∑

U−δU<E≤U

∑
ν

|E, ν〉〈E, ν|

Equilibrium states can also be represented by non-standard ensembles.

ex. Classical statistical mechanics

Almost every state on an equi-energy surface is the same equilibrium state.

→ one can take either of the following as the equilibrium state:

(i) mixture of all states on the equi-energy surface of finite thickness δU

(ii) mixture of a part of states on the equi-energy surface of thickness δU

(iii) a single pure state in these mixed states (MD simulations use such a state)

� �
Q3. What happens if we take (ii) or (iii) as ρ̂(t0) = ρ̂eq?� �



Then, in general, ρ̂(t) evolves by the equilibrium Hamiltonian Ĥ .

ex. ρ̂(t0) = a coherent state

i~
∂

∂t
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
6= 0 ⇒ ρ̂(t) 6= ρ̂(t0).

Hence, microscopic observables vary in this equilibrium state;

〈a〉t 6= 〈a〉t0

However, every macroscopic variable A takes a constant value 〈A〉eq in the sense
that

〈A〉t = 〈A〉eq + o
(
〈A〉tp

)
.

Here, 〈A〉tp denotes a typical value of A.

ex. Total magnetization: 〈Mz〉tp = O(V ),

〈Mz〉t = 〈Mz〉eq + o (V ) .
� �

These are natures of real equilibrium states!� �



Then, we obtain

∆A(t) ≡ Tr[ρ̂(t)Â]− Tr[ρ̂eqÂ]

=

∫ t

t0

1

i~
Tr

(
ρ̂(t′)

[
B̂, Ă(t− t′)

])
f (t′)dt′ ← microscopic physics

which apparently contradicts with

∆A(t) =

∫ t

t0

Φeq(t− t′)f (t′)dt′ ← macroscopic physics

The micro-macro consistency requires� �
• t′ in ρ̂(t′) should be irrelavant to the integral.

→ ρ̂(t′) can be replaced with ρ̂(t0).

• All possible forms of ρ̂eq give identical results for (correlations of) macro-

scopic variables, if we neglect o
(
〈A〉tp

)
terms.

→ ρ̂(t0) (such as a coherent state) can be replaced with (1/Z) exp[−βĤ ].� �
If you accept these assumtions, you recover the Kubo formula.



These assumptions have never been proved for general models.

Presumably, the proof is impossible for general models.

These assumptions are restrictions imposed by Nature on physical models,

rather than statements to be proved.

Similar restriction:

According to thermodynamics, entropy S increases with increasing U .

This cannot be true for general Hamiltonians.

Hence, this is a restriction imposed by Nature on physical models.

ex. S of spin Hamiltonians decreases with increasing U for U > 0.

In real physical systems, many modes (other than spin degrees of freedom) are

excited for U > 0, and S does increase with increasing U .

→ Spin models are physically valid only for U < 0.
� �
Q3. What happens if we take (ii) or (iii) as ρ̂(t0) = ρ̂eq?

A3. If you accept the restrictions imposed by Nature, then you recover the

Kubo formula.� �
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Universal properties of response functions

Equilibrium states

Response to a weak force f (t)

→ linear response function Φeq

→ Φeq = [Kubo formula]

→ many universal properties

→ all important results in the ‘linear nonequilibrium regime’!

Nonequilibrium steady states (NESSs) driven by a (strong) force F

Response to a weak force f (t)

→ linear response function ΦF

→ ΦF 6= [Kubo formula]

→ any universal properties in the ‘nonlinear nonequilibrium regime’ ?

F : pump, f (t): probe → pump-probe experiment



� �
This talk:

Universal properties of ΦF .� �
• common to diverse physical systems (⇔ limited to specific systems)

• relations between measurable quantities (⇔ merely formal relations)

• relevant to macroscopic systems (⇔ only to mesoscopic or smaller systems)

� �
Further in this talk:

Universal properties of nonlinear response functions Φ
(2)
F ,Φ

(3)
F , · · · of NESSs.� �

c.f. Those of eq. states, Φ
(2)
eq ,Φ

(3)
eq , · · · , are well-known.



Response function of a NESS of macroscopic quantum systems

• Apply a strong static field F (pump field).

timet
in t

out

NESS

F

current

A nonequilibrium steady states (NESS) is realized for [tin, tout]

Every macroscopic variable A takes a constant value 〈A〉F , i.e.,

〈A〉tF = 〈A〉F + o
(
〈A〉tp

)
.

Here, 〈A〉tp denotes a typical value of A.



• Further apply a weak and time-dependent probe field f (t) for t ≥ t0,

F (t) = F + f (t).

timet
in t

out

NESS

F

current

t
0 t

f(t)

• Response of the NESS to f (t): see the response,

∆A(t) ≡ 〈A〉tF+f − 〈A〉F ,

of a macroscopic variable A.

ex. A = Mz = µB
∑
r

σz(r) : total magnetic moment



• To the linear order in f ,

∆A(t) =

∫ t

t0

ΦF (t− t′)f (t′)dt′

• This and the causality relation

ΦF (τ ) = 0 for τ < 0

define the (linear) response function ΦF (τ ) of the NESS.

� �
General and universal properties of ΦF ?� �

A. Shimizu and T. Yuge, J. Phys. Soc. Jpn. 79 (2010) 013002.



General formula — a microscopic expression of ΦF

• A large system

target system + driving source + heat reservoir + · · · ≡ total system

F

air (heat reservoir)

battery

f(t)

f (t) is treated as an external field.

• Hamiltonian

Ĥtot − B̂f (t) (B̂ ∈ target system).

• Density operator of the total system: ρ̂totF+f (t), or ρ̂
tot
F (t) for f = 0.



→ density operator of the NESS of the target system is

ρ̂F ≡ Tr′
[
ρ̂totF (t)

]
(Tr′ ≡ trace over out of the target system).

• To the linear order in f ;

∆A(t) ≡ Tr[ρ̂totF+f (t)Â]− Tr[ρ̂totF (t0)Â]

=

∫ t

t0

1

i~
Tr

(
ρ̂totF (t′)

[
B̂, Ă(t− t′)

])
f (t′)dt′,

Here,

Ă(τ ) ≡ e
i
~Ĥ

totτ Â e
−i
~ Ĥtotτ .

• This must be consistent with the macroscopic physics,

∆A(t) =

∫ t

t0

ΦF (t− t′)f (t′)dt′.

Hence, t′ in ρ̂totF (t′) must be irrelevant. We write

ρ̂totF ≡ ρ̂totF (t′),

where t′ is an arbitrary time (such as t0) in [tin, tout].



•We thus obtain a microscopic expression of ΦF ;

response-correlation relation (RCR)� �

ΦAB
F (τ ) =

1

i~
Tr

(
ρ̂totF

[
B̂, Ă(τ )

])
for τ ≥ 0.

� �

Note: The RHS is not fluctuation because correlation does not necessarily

represent fluctuation (as will be shown shortly).



Violation of fluctuation-dissipation and reciprocal relations

When F = 0 (equilibrium states),

ΦAB
F (τ ) =

1

i~
Tr

(
ρ̂totF

[
B̂, Ă(τ )

])
: response-correlation relation

↓
ΦAB
eq (τ ) =

1

i~
Tr

(
ρ̂eq

[
B̂, Ă(τ )

])
=

1

kBT
〈 ˙̆B(0); Ă(τ )〉eq: canonical correlation (Kubo formula)

→ reciprocal relations

[i]
=

1

kBT

〈
˙̆
B(0)Ă(τ ) + Ă(τ )

˙̆
B(0)

2

〉
eq

for kBT � ~ω

: symmetrized time correlation
[ii]
= FT of fluctuation for kBT � ~ω

→ fluctuation-dissipation relation

[i] Kubo, Toda, Hashitsume, Statistical Physics part II.

[ii] Sec. 4 of K. Koshino and A. Shimizu, Physics Reports 412 (2005) 191.



When F 6=0 (NESSs),

ΦAB
F (τ ) =

1

i~
Tr

(
ρ̂totF

[
B̂, Ă(τ )

])
: response-correlation relation

6= 1

kBT
〈 ˙̆B(0); Ă(τ )〉F : canonical correlation

6→ reciprocal relations

6→ fluctuation-dissipation relation
� �
• The response-correlation relation holds both for equilibrium states and for

NESSs.

• But, it is equivalent to the Kubo formula only for the former.

• As a result, the FDR and the reciprocal relations are violated in NESSs.� �



General properties of ΦAB
F (τ )

ΞABF (ω) ≡
∫ ∞
0

ΦAB
F (τ )eiωτdτ

(i) From the causality alone (rather obvious relations)

• dispersion relations;

Re ΞABF (ω) =

∫ ∞
−∞

P
ω′ − ω

ImΞABF (ω′)
dω′

π
,

ImΞABF (ω) = −
∫ ∞
−∞

P
ω′ − ω

ReΞABF (ω′)
dω′

π
.

• moment sum rules

• etc.
� �

These are exactly same as those for ΞABeq (ω).
� �



• Sum rules ∫ ∞
−∞

ReΞABF (ω)
dω

π
=

〈
1

i~

[
B̂, Â

]〉
F
,∫ ∞

−∞

{
ω ImΞABF (ω)−

〈
1

i~

[
B̂, Â

]〉
F

}
dω

π
=

〈
1

i~

[
B̂,

˙̆
A(0)

]〉
F
,

where

Â : observable of interest

B̂ : observable that couples to f (t) via the interaction term, −B̂f (t)

〈·〉F ≡ Tr (ρ̂F · ) : expectation value in the NESS
(
ρ̂F ≡ Tr′

[
ρ̂totF (t)

])
� �

These are generalization of those for ΞABeq (ω).
� �
Unlike some formal relations,

– all terms can be measured experimentally.

– predictions on two or more independent experiments.



•Asymptotic behaviors (|ω| → ∞)

– ΞABF (ω) should decay quickly s.t. the integrals of the sum rules converge.

– In particular,

lim
ω→∞

ω ImΞABF (ω) =

〈
1

i~

[
B̂, Â

]〉
F
.

� �
These are generalization of those for ΞABeq (ω).

� �
•Reciprocal relation for the integrated values∫ ∞

−∞
ReΞABF (ω)dω = −

∫ ∞
−∞

ReΞBA
F (ω)dω,

although reciprocal relations for each ω are violated for F 6= 0.



� �
All of these properties are general and universal!� �

• No assumption except that NESSs are stable against small perturbations.

timet
in t

out

NESS

F

current

t
0 t

f(t)

∀ε > 0,∃fε, |∆A| < ε for |f (t)| < fε.

• Applicable to diverse physical systems.

ex. electrical conductors, magnetic materials, dielectric materials, nonlinear

optical materials, fluids, stars, biological systems, · · · .

• Hold for any value of F .



Universal properties, which hold for any value of F ,

of response functions: The complete list

eq. states (F = 0) NESSs (F 6= 0)

dispersion relations Yes Yes

moment sum rules Yes Yes

sum rules Yes Yes, if 〈·〉eq→ 〈·〉F
asymptotic behaviors Yes Yes, if 〈·〉eq→ 〈·〉F
reciprocal rels. for integrated values Yes Yes

Universal properties which hold only for F = 0 (eq. states)

eq. states (F = 0) NESSs (F 6= 0)

reciprocal relatoins for each ω Yes No

fluctuation-dissipation relations Yes No

Impossible universal properties, which hold for any value of F .

eq. states (F = 0) NESSs (F 6= 0)

(impossible) No Yes



Implications of the sum rules and asymptotic behaviors

We focus on� �∫ ∞
−∞

ReΞABF (ω)
dω

π
= lim

ω→∞
ω ImΞABF (ω) =

〈
1

i~

[
B̂, Â

]〉
F
.

� �

Implication (1) – fundamental limits

• large positive response in some range of ω

→ small or large negative response in another range

• At high ω, response is small and independent of what you devise.



Implication (2) – operational meaning

•
∫ ∞
−∞

ReΞABF (ω)
dω

π
= ΦAB

F (τ → +0) : not measurable experimentally!

• ReΞABF (ω) : measurable in a certain finite range of ω.

• For higher ω, Re ΞABF (ω) decays quickly.

→ measurement at higher ω is not necessary.
� �
The sum rule should be considered as a prediction on ReΞABF (ω) in a certain

finite range of ω.� �



Implication (3) – usefulness∫ ∞
−∞

ReΞABF (ω)
dω

π
= lim

ω→∞
ω ImΞABF (ω) =

〈
1

i~

[
B̂, Â

]〉
F

holds universally. So,

• Can estimate data in some range of ω from existing data in another range.

• Can detect errors in data.

• Reveal equivalence between independently-derived relations.

(An example will be given later)

• Can check theoretical models and results against these relations.

(Examples will be given later)



Implication (4) – the sum value (or asymptotic value)

∫ ∞
−∞

ReΞABF (ω)
dω

π
= lim

ω→∞
ω ImΞABF (ω) =

〈
Ĉ
〉
F
, where Ĉ ≡ 1

i~

[
B̂, Â

]
.

• Ĉ depends neither on the Hamiltonian nor on the state.

• Only through ρ̂F the sum value can be affected by these factors.

•When Â and B̂ are linear functions of canonical variables, in particular,

→ Ĉ ∝ 1̂

→ the sum takes the same value for every state.



Example: electrical conductor

F

air (heat reservoir)

battery

f(t)

When A = I (electric current averaged over the x direction),

∆I(t) ≡ 〈I〉tF+f − 〈I〉F

=

∫ t

t0

ΦIB
F (t− t′)f (t′)dt′ + o(f ),

∫ ∞
−∞

ReΞIBF (ω)
dω

π
= lim

ω→∞
ω ImΞIBF (ω)

=
e2Ne

mL
: independent of F !



The sum rule for NESSs is rather counterintuitive

∫ ∞
−∞

ReΞIBF (ω)
dω

π
=

e2Ne

mL
: independent of F !

Low ω : Re ΞIBF (ω) depends strongly on F for large |F |.
High ω : Re ΞIBF (ω) would be insensitive to F .

→ the integral would depend on F ?

→ No !



An example: MD simulation of an electrical conductor

MD simulation of a model of a classical electrical conductor

(For classical systems: commutators → Poisson brackets)

We have previously shown ...

• small F

1. linear response [1]

2. FDR and dispersion relations are satisfied [1]

3. negative long-time tail ∝ 1/t2 [2]

• NESSs at large |F |
1. nonlinear response [1]

2. long-time tail is strongly modified [2]

3. fluctuation-dissipation relation is violated due to reduced shot noise [3]

[1] T. Yuge, N. Ito and AS, J. Phys. Soc. Jpn. 74 (2005) 1895.

[2] T. Yuge and AS, J. Phys. Soc. Jpn. 76 (2007) 093001.

[3] T. Yuge and AS, J. Phys. Soc. Jpn. 78 (2009) 083001.



Sum rule:

∫ ∞
−∞

ReΞIBF (ω)
dω

π
=

e2Ne

mL
: indepdendent of F
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Asymptotic behavior: lim
ω→∞

ω ImΞIBF (ω) =
e2Ne

mL
: indepdendent of F

 0

 1

 2

 0.001  0.01  0.1  1  10

ω

ω
 Im

 Ξ
F

 (ω
 )

I 
B

F = 0 (circles), 0.06 (squares) and 0.1 (triangles).



Confirmed:

• Correctness of the theoretical results.

Conversely: checked this particular model and results:

• The model is a good model.

• Our MD simulation correctly describes NESSs and their responses.



Is the sum always independent of F ?
� �

No. It depends on the observable of interest.� �

Example: When A = I2,

∫ ∞
−∞

ReΞI
2B

F (ω)
dω

π
= lim

ω→∞
ω ImΞI

2B
F (ω)

=
2e2Ne

mL
〈I〉F : strongly depends on F !

� �
Although the forms of the sum rules are similar to those for Ξeq, the sum

values can be much different from those of Ξeq.� �



Do the above results hold in non-Hamiltonian systems? – Yes

All real physical systems are Hamiltonian systems

→ the above results (such as the sum rule) hold

Non-Hamiltonian models (such as stochastic models) are introdued for the sake

of convenience (of theoreticians).

→ If modeled properly, the above results (such as the sum rule) hold.

If not hold, the model is NG.

Example: projection

Original Hamiltonian system sum rule: yes

↓ projection

An equation whose γ, ξ are complicated functions sum rule: yes

↓ approximations

Approx. A: underdamped Langevin eq. sum rule: yes

Approx. B：overdamped Langevin eq. sum rule: no !

Approx. C：unphysical approximation sum rule: no !



Our results (such as the sum rule) are something like the

charge conservation

• hold in diverse physical systems

• convenient for calculations and experiments

• Sometimes very powerful

ex.：Equivalence of identities in underdamped Langevin eq.

Harada-Sasa (2006)⇐= (identical) =⇒ Hasegawa et al. (1979)

〈J〉F = (γ/m)(〈p2〉F/m− kBT )

• A necessary condition for good models and calculations

ex.: justification of results of MD simulations

Note: not a sufficient condition

ex. underdamped Langevin eq. sum rule: yes, but good only for small F .



Extension to nonlinear response functions

AS, in preparation

∆A(t) ≡ 〈A〉tF+f1+f2+··· − 〈A〉F =

∞∑
n=1

∆A(n)(t)

∆A(n)(t) =
1

n!

∑
α1

· · ·
∑
αn

∫ t1

t0

dt1 · · ·
∫ tn

t0

dtn

×Φ(n)
F (t− t1, · · · , t− tn)fα1(t1) · · · fαn(tn)

� �
Relations similar to those for ΦF (= Φ

(1)
F ) can be derived for Φ

(n)
F .� �

ex. n = 2 :

∫ ∫ ∞
−∞

Ξ
(2)ABα1Bα2
F (σ1ω1, σ2ω2)

dω1
π

dω2
π

=
1

2(i~)2
〈[

B̂α1,
[
B̂α2, Â

]]
+ (1↔ 2)

〉
F
.



Summary

In nonequilibrium statistical mechanics,

• quantum measurement theory

• requirement of micro-macro consistency

have been implicitly used.

In the linear nonequilibrium regime� �
•Where they are used.

• They actually play crucial roles.� �
In the nonlinear nonequilibrium regime� �

• The complete list of universal properties of response functions of nonequi-

librium steady states (NESSs).� �



非平衡定常状態の応答関数の一般的性質、特に総和則と漸近的性質

• The sum rule is a prediction on the collection of the results of many separate

experiments.

•ハミルトン系でなくても、まともなモデルなら、sum ruleは成立

→ 成立しなければ、そのモデルは要注意！

•いわば、電荷保存則のようなもの

– きわめて広い範囲で成立

– 計算や測定に便利

∗まだ測ってない部分を予言できる
∗誤りを検出できる

– 知っているといないのとでは、大きく違う

– まともなモデル・計算の満たすべき必要条件
→ 非平衡系のリトマス試験紙！
計算や測定のチェックにも使ってください



Extension to microscopic systems

So far: NESS of macroscopic systems:

Every macroscopic observable A = ‘constant’;

fluctuation of A

typical value of A
→ 0 as V →∞.

ex. When A = Mz = µB
∑
r

σz(r) : total magnetic moment,

fluctuation of Mz

typical value of Mz
=

o(V )

O(V )
→ 0.

We have assumed that ρ̂totF (t) satisfies this condition.

• Not steady microscopically, in general.

•Microscopic observables can vary (as in eq. states);

〈σz(r)〉 evolves with t, whereas 〈Mz〉 = ‘constant’.



Extension : Steady states of microscopic systems:

For every observable A (such as σz(r)),

〈A〉 = constant.

→ ρ̂F is independent of t.
� �
Our results are applicable if

• Both F and f (t) can be treated as external fields acting on the target

system.

• Density operator ρ̂F of the target system for f = 0 is independent of t.� �



What are ‘macroscopic systems’?

Theory of macroscopic systems (thermodynamics, statistical mechanics, · · · ) is
an asymptotic theory:

∀ε > 0,∃Vε such that∣∣[theoretical value]− [experimental value]
∣∣ < ε for ∀V > Vε

for all intensive variables (such as the energy density).

If you require precision ε and if V > Vε, then the system is a macroscopic system

(for this theory).

• If you require ε = 0.1 and if V > V0.1, then the system is macroscopic.

• If you require ε = 0.01 but if V0.1 < V < V0.01, then the system is not

macroscopic.
� �
A given system is a macroscopic system or not depending on the precision

you require.� �



Sum rule:

∫ ∞
−∞

ReΞIBF (ω)
dω

π
=

∫ ∞
−∞

ωReΞIBF (ω)
d lnω

π
=

e2Ne
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