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Abstract 

Using microscopic models in which both photons and excitons are treated as microscopic degrees of freedom, we discuss 
polaritons of two cases: one is the case where excitonic parameters are time dependent. The time dependence causes the creation 
of polaritons from a ‘false vacuum.’ It is shown that both the creation spectra and the creation efficiency are very different from 
the results of previous studies. The other case is that of polaritons in absorptive and inhomogeneous cavities. A polariton in such 
a system cannot be viewed as a back-and-forth oscillation between a photon state and an exciton state. 0 1997 Elsevier Science 
S.A. 
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1. Introduction 

Optical phenomena in condensed matter are usually 
discussed in the case when the optical field can be 
treated as a classical field. Recently, however, quantum 
optical phenomena in condensed matter, in which the 
optical field exhibits its quantum nature in condensed 
matter, have been attracting much attention. A simple 
theoretical framework, which is widely used in the 
literature, for the analysis of such phenomena is to 
somehow quantize the macroscopic electromagnetic 
(EM) fields in the ‘macroscopic Maxwell equations’ 
(Maxwell equations in matter) [l]. The simple theory 
treats the matter as an effective medium, whose proper- 
ties are assumed to be fully described by phenomeno- 
logical parameters such as a dielectric constant and 
nonlinear susceptibilities. The theory works well for 
simple problems. However, its validity is not clear when 
dispersion and absorption is important, when the sys- 
tem is inhomogeneous, when nonlinearities are impor- 
tant, or when the phenomenological parameters are 
time dependent. 

Another way of formulating quantum optics in con- 
densed matter is a microscopic approach. In this case, 
the matter is represented as microscopic polarization 
fields, and both the EM fields and the polarization 
fields are quantized. Upon diagonalization of the 
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Hamiltonian of the coupled photon-polarization sys- 
tem, Hopfield [2] obtained ‘polaritons’ as eigenstates of 
the total system. His theory has been extended by many 
researchers to study polaritons of various types. For 
example, polaritons in the case when excitors are sub- 
ject to dissipation were studied by Huttner et al. [3]. 

In this work, we discuss two cases: one is polaritons 
in the case when excitonic parameters (the exciton 
energy and exciton-photon coupling) are time depen- 
dent [4]. The time dependence causes the creation of 
polaritons from a ‘false vacuum.’ This phenomenon is 
analogous to the dynamic Casimir effect, which is the 
creation of photons by rapid movement of mirrors in a 
vacuum [5,6]. We will present the creation spectra of 
both the lower- and upper-branch polaritons. The other 
case is that of polaritons in absorptive and inhomoge- 
neous cavities [7]. We point out that a polariton in such 
a system cannot be viewed as a back-and-forth oscilla- 
tion between a photon state and an exciton state, and a 
photon state will evolve into a superposition of many, 
different cxciton states, and will not revive. 

2. Creation of polaritons from a false vacuum of solids 

It is usually assumed in discussions of polaritons that 
parameters such as the exciton energy or exciton-pho- 
ton coupling are constant, i.e., independent of time. 
What happens if the parameters are time dependent? 
We can show that polaritons will be created even when 
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the initial state is the vacuum. This is a general prop- 
erty of quantum theory: particles will be created when 
the Lagrangian (or, almost equivalently, equations of 
motion) has a time-dependent parameter(s) [5]. This 
can be understood simply as follows. Suppose that the 
parameters are constant for t < 0. For these constant 
values of parameters, we can (in principle) find out the 
ground state, which is called a ‘vacuum,’ in which no 
polaritons are present. This vacuum is denoted by la,). 
Assume that the parameters vary during 0 < t < T, and 
again become constant for t 3 T. Then, for t 3 T we 
can find out another ground state, which is denoted by 
I&). Under the initial condition that the state vector 
If)) is 16,) for f < 0, we may solve the SchrSdinger 
equation’. Then we will find that I$) at t 3 T differs 
from 16,) in general. This means that we have a finite 
probability of finding particles at t > T. More particles 
are normally created for faster variations of parameters 
(i.e., for shorter T). This is understood if we think of 
the limiting case of T-+ co, for which It++ ) evolves 
adiabatically from 16,) at t d 0 to I&) at t 3 T. and no 
particles are created. That is, non-adiabatic (fast) varia- 
tion is necessary for particle creation. 

We here consider particle creation in condensed mat- 
ter. Such a phenomenon is known in quantum optics as 
‘spontaneous parametric fluorescence’ [8]. The conven- 
tional theory of spontaneous parametric fluorescence is 
a phenomenological one, that is, it relies on the phe- 
nomenological quantization scheme, assuming that dis- 
persion and absorption are absent. It also assumes a 
phenomenological interaction Hamiltonian of the fol- 
lowing form: 

H,,, = gaJa:a, + h.c. (1) 

where as, ai and ap are annihilation operators of ‘signal’ 
(s), ‘idler’ (i) and ‘pump’ (p) photons, respectively, and 
g is an effective coupling constant which is proportional 
to the second-order nonlinear susceptibility. Through 
this interaction, the equations of motion of the signal- 
and idler-photon fields are modulated at the frequency 
oP ( = o, + wi) of the pump photon field. That is, the 
timescale T of the modulation is T w 1 /CL), w 1 /wi. This 
is a very fast modulation, and the signal and idler 
photons can be created efficiently enough to be ob- 
served experimentally. 

Similar situations have been studied by Yablonovitch 
[9] and by Schwinger [lo]. They investigated photon 
creation in the cases where the dielectric constant c of 

’ Note that in our problem, the Fock space for t < 0 is different 
from that for t > T because the parameters which are used to define 
the Fock spaces are different. Hence, the equivalence of the 
Schriidinger picture and Heisenberg picture does not necessarily hold 
(if the system size is infinite). Although we explain the physics using 
the Schriidinger picture, the Heisenberg picture is more appropriate 
to treat this problem. Actual calculations have been performed in the 
Heisenberg picture. 

material is time dependent. The time dependence may 
be due to the creation of an electron-hole plasma by a 
short laser pulse [9], or by sudden collapse of a bubble 
in a liquid [lo]. As in the case of the spontaneous 
parametric fluorescence, the theoretical analyses are 
phenomenological ones, that is, they rely on the phe- 
nomenological quantization scheme, assuming that dis- 
persion and absorption are absent. It was furthermore 
assumed that E changes either discontinuously (T = 0) 
[9,1012, or almost adiabatically (T - m) [9]. The discon- 
tinuous change is unphysical and, as will be shown 
below, turns out to lead to an enormous overestimation 
of the particle-creation efficiency, 

Because of these many assumptions, the previous 
theories [S- lo] have only a limited range of applicabil- 
ity. For example, they cannot be applied to the case 
when relevant photon energies t’iw are close to the 
excitonic energy hay, because the dispersion is strong 
for w - (0,. However. such a region of the photon 
energy should be most interesting. Such an interesting 
region has been studied by Okushima and Shimizu [4], 
by employing a microscopic model, which is described 
by the Lagrangian density of the system of the exciton 
field X(r, t), the photon field A(v, t), and the longitudi- 
nal field U(r, t): 

- r(t)[A ,ri+ UV.X] (2) 

where the electric and magnetic fields are given by 

E= -k-VU, B=VxA (3) 

This Lagrangian is a generalization to the time-depen- 
dent w, and c( of the model proposed by Huttner et al. 
[3]. Following them, we apply the standard quantiza- 
tion procedure as follows. We impose the Coulomb 
gauge condition, so that A becomes transversal and U 
can be eliminated. By decomposing X into the transver- 
sal and longitudinal parts, 

X=XTfXl (4) 
we can decompose the Lagrangian L into the transver- 
sal and longitudinal parts: 

(5) 
Since A is involved only in L ‘, we focus on this part. In 
the Coulomb gauge, it is convenient to quantize the 
fields in the k space: 

* Ref. [lo] introduced a finite timescale r which in a sense charac- 
terizes the time dependence of the dielectric constant. However, 
instantaneous changes were assumed at t = &- r/2, which seems to be 
more relevant in determining the number of created photons. The 
same can be said about the model shown in Fig. 5 of Ref. [6]. 
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A (r, t) = C A (k, t) elk”, where A(k, t)=A+( -k, t) 
k 

(6) 

and similarly for XT. The fields are further decomposed 
into two polarizations: 

A(k, t) = 1 A”(/& t)e2(k), k.e,(k) = 0 (7) 
i = 1.2 

and similarly for XT. By expressing L’ in terms of 
these components. we can find their conjugate mo- 
menta fl”(k, t) and P”(k, t) by differentiating L’ with 
respect to k’(k, t) and *‘“(A, t). respectively. The 
Hamiltonian H (for the transversal parts) is obtained as 

Note that this H, like L: has explicit t dependence, 
H = H(t), through the t-dependent parameters. The 
fields are then quantized, in the standard manner, by 
imposing the equal-time commutation relations: 

[A”(/%, t), R’(k’, t)J = [X’-(k. f), P’fk’, t)] = ittn‘j,;.n‘k.k. 
(9) 

This leads to the Heisenberg equations of motion: 

iii i A ’ = [A A) H(t)], 
? 

ih ; x’ = [x”, H(t)] (10) 

So far, the calculations are parallel to those of Ref. 
[3]. The peculiar features of time-dependent L appear 
from now on. Since H is bilinear in the fields, we can 
diagonalize it at each t. Let r?‘(k, t) and c(k, t) be the 
operators which diagonalize the Hamiltonian at time t: 

H(t) = tz 1 [n,,(k, t)E”+(k, t)E?“(k, t) 
k.i 

+ &(k, t)b’+(k, t)p(k, t)] + c-numbers (11) 

If a and o, were constant, d” and p would have 
become the usual annihilation operators (times a phase 
factor. which of course is unimportant) of lower-branch 
(LB) and upper-branch (UB) polaritons, respectively, 
with (SC, and ~5~ being their eigen-frequencies. However, 
this is not the case because our x and ~0~ depend on t. 
Moreover, it should also be emphasized that the equa- 
tions 

ih $ (7” = [CT”, H(t)], 
(? -. 

ih z h” = [6;. H(t)] (wrong) 

(12) 

which look like Eq. (lo), do not hold for cl” and F. For 
these reasons, the diagonalization of H does not solve 
the problem. 

To solve the problem, we must first specify the initial 
state vector. For this purpose, we assume that the 
parameters are constant in the remote past: 

o,(t) - WI as t--t - s (13) 

This ensures that as t + - cc, the operators 6” and 6;i, 
and the frequencies ~5~ and G,, approach the annihila- 
tion operators Llf and & and the eigen-frequencies ~5~,, 
and G,,, respectively, of the usual polariton operators, 
which are for the values of the parameters a = c~i and 
(ti.,. = w,. We consider the case where the initial state 
vector is the vacuum of these polaritons: 

I@) = la,), where &$?,) = 6”;/6,) = 0 (14) 

The state vector does not evolve because we are work- 
ing in the Heisenberg picture. On the other hand, to 
specify the final states (the vacuum, one-particle states, 
two-particle states, etc.). we further assume that the 
parameters are constant also in the remote future: 

‘T(f) - ‘22, w,(t) - (‘12 as t--t + x’ (15) 

Hence, as t-+ + xr, the operators 6’ and h”’ and the 
frequencies cZ?, and ~5~ approach the annihilation opera- 
tors 6; and & and the eigen-frequencies G,, and ~2,~. 
respectively, of other polariton operators, which are for 
the values of the parameters x = x2 and (0, = m2. 

We are interested in the number of created polaritons 
of each polariton mode in the final state. They are given 
by 

E-ir;#) = (qd;+(k)d<(k)lG, >. 

ii;;>(k) = (a,l&+(k)fz(k)lo,) (16) 

for each mode of the LB and UB polaritons, respec- 
tively. To evaluate these numbers, we must express ir$ 
and h”; in terms of (T;, 1;; and their Hermitian conju- 
gates. For our time-dependent Lagrangian. this relation 
takes the form of a Bogoliubov transformation, hence 

ki, and fi,,, become finite [5]. The coefficients of the 
transformation can be found by solving the Heisenberg 
equations of motion for the fields, Eq. (IO), and insert- 
ing the results into the relation between the fields and 
ci., p., cl;+ and p.t, 

We have performed a numerical calculation taking 
the following forms for tv,(t) and x(t): 

I 

WI (t<o) 

w,(t) = ccl, .?k&.?? [q-sin($.!)] (()<t< T) 

I% (t3 77 
(17) 

r 
=I (t d 0) 

a(t)=! zi-y[q-sin($!)] (O<t<T) 

1 x2 (t> T) 
(18) 
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These are continuous up to the second derivatives, 
whereas the third derivatives are discontinuous at t = 0 
and T. Fig. l(a) shows the calculated results for the 
number of created polaritons of each mode of the lower 
branch, ii&(k), for various values of o, T. Fig. l(b) 
shows those of the upper branch, G;,(k). In both cases, 
strong excitonic features appear at ck!w, = 1 (which 
also means ck/o, N 1 because we have taken m, N CV~). 
When ck < LC), (ck > oi), UB (LB) polaritons are created 
more efficiently than LB (UB) polaritons. This 
crossover occurs because we are here varying the exci- 
ton parameters, and the UB polariton has more (less) 
exciton component for ck < L?), (ck > w,). These charac- 
teristics are correctly described only by a microscopic 
model. 

We also find that fi‘$ decreases very quickly as T is 
increased. To understand the decrease, let us investigate 
the case when k = 200,lc and X, = uZ = 0.001~~>,~/&. 
For such large k and small CC, an LB polariton is almost 
an exciton, and we can understand the physics clearly. 
The dotted line of Fig. 2 plots iii2 for this case as a 
function of w,T. We find that E$ decreases exponen- 
tially as T is increased. We also find small oscillations 
for large T. This is found to be due to the fact that our 
o,(t) has singularities (third-order derivative is discon- 
tinuous at t = 0 and T). To verify this, we also consider 
the case when w,(t) takes the following analytic form 

t41: 
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Fig. I. The number of created polaritons per mode for (a) lower- and 
(b) upper-branch polaritons. The polariton parameters are taken as 
wz = 0.9504, x, = 0.050&,~~, x2 = 0.03, ,,/&and~,,T-0.1, 2. 4. 

Fig. 2. The number of created polaritons per mode for lower-branch 
(LB) polaritons is plotted as a function of W, T. (. .) Result for the 
LB polariton of k = 20 o,/c,, for x, = xl = O.OOlo,J~; (- ) result 
when w,(t) takes the analytic form, Eq. (19). and x = 0 (which means 
that an LB polariton in this case ia a pure exciton). In both cases, W, 
is taken to be 0.9~0,. 

w?(t) = w;2 + 
(w; - wf) 

1 +exp( -t/r) 

where T = 1 Or. (The coefficient is chosen in such a way 
that a small-T behavior agrees with the case of the 
non-analytic o,.). To simplify discussion, let us take 
cx = 0, for which an LB polariton becomes a pure 
exciton, and C$ becomes independent of k. We then 
obtain the exact solution: 

(20) 

This is plotted in Fig. 2 (-------). It is seen that the 
non-analyticity of Eq. (17) induces oscillations. It was 
also shown [4] that for large CIJ, T ( > 201, the non-ana- 
lyticity enhances ri$ by many orders of magnitude. 
Since non-analytic change of co,(t) is unphysical, the 
result of analytic change of w,,(t) should be more 
convincing. However, most previous studies ([9, IO]: see 
footnote 2) assumed that a time-dependent parameter 
(such as the dielectric constant) itself has discontinu- 
ities. Our results strongly suggest that such strong 
singularities would lead to physically incorrect results. 
Regarding our results of Fig. 1, they may be convincing 
because our slight singularity does not play important 
roles for such short T, as seen from Fig. 2. 

To summarize this section, we have considered a 
polariton system in which excitonic parameters are 
time-dependent. The time dependence causes the cre- 
ation of polaritons from a ‘false vacuum’, and we have 
evaluated the number of created polaritons for each 
polariton mode. Since we are interested in the wave- 
length regions in which polariton effects are important, 
and the dielectric constant exhibits strong dispersions, 
we have employed a microscopic model in which the 
polarization degrees of freedom are included as micro- 
scopic variables. Moreover, whereas most previous 
studies assumed sudden changes (T = 0) of a parame- 
ter(s). we have assumed more realistic situations in 
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which excitonic parameters vary within a finite time 
(T > 0). Our results strikingly differ from the previous 
results, both qualitatively (strong excitonic features at 
ck/o, N 1) and quantitatively (by many orders of mag- 
nitude). 

3. Polaritons in absorptive and inhomogeneous cavities 

It is usually assumed in discussions of polaritons that 
the excitation level, which couples to photons, of the 
material is a discrete level. The excitation level may be 
an exciton level in the case of an excitonic polariton, or 
a phonon level for a phonon polariton. As the photon 
energy is increased to a continuous absorption spec- 
trum, the single-level approximation breaks down. 
Even in such a case, however, we may treat, to a first 
approximation, the material excitations as bosons (po- 
larization fields) because the excitations are composed 
of bosons or pair excitations of fermions. We may 
therefore write the Lagrangian density. assuming a 
one-dimensional system for simplicity, as [7]: 

(22) 

9 1 = 
mat = - I 2 0 do&&, - w2f:,) (23) 

i 
Oc $Pint = - do&,,Ai<‘,, (24) 

0 

where A(x, t) is the vector potential of the electromag- 
netic (EM) field, and TcO(x, t) denotes the polarization 
field of frequency w. Since we are considering the case 
where the photon energy lies in a continuous absorp- 
tion spectrum, we have taken T<‘,,(x, t) to have a contin- 
uous label w, and integral over w is performed in Eqs. 
(23) and (24). Moreover, we are interested in the case 
where the spatial distribution of the material is inhomo- 
geneous because in such a case the material constitutes 
a lossy cavity, in which behavior of polaritons should 
be very interesting. When the material exists only in the 
regions of 1x1 3 d/2, we may express this inhomoge- 
neous distribution by imposing: 

fco(x, t) = 0 for (xl < C/2 (25) 

The equal-time canonical quantization of A and T(,, can 
be performed in the standard manner, and we have 
found that the Hamiltonian is diagonalized as [7]: 

H = C 1 dWfZWa(Y’3)(W)+u(,,u)(,) 
rr=* q 

(26) 

Here, u(q@(,) is the annihilation operator of a polari- 
ton, which is given by 

L@‘)(O) = 1 (@“‘(co)E,, + &“(oJ)A,,) 

+ ;Tf”Yw ~‘LL7.,,,~) (27) 

where CI= 2 1 andj=O. 1, 2, . (or, 0 and q= 1, 2, 
..) label some modes of the cavity, - t+,E and P are 

conjugate momenta of A and X, respectively, and fi, p, 
1’ and 7 are some coefficients (see Ref. [7].) It is seen 
that L(~“/“(w) is a superposition of an infinite number of 
modes (of A and X). In particular, the integration over 
continuous exciton modes results in the breakdown of 
the standard picture, that a polariton is a back-and- 
forth oscillation of photon + exciton + photon j exci- 
ton + ..‘. That is, when we prepare a photon state as an 
initial state, the state will evolve into a superposition of 
an infinite number of exciton modes, and never returns 
to the initial photon state. 

Using the solution of such unusual polaritons, we 
can investigate various physical phenomena in absorp- 
tive and inhomogeneous cavities. For example, we have 
evaluated the radiative lifetime of an excited atom in 
such a cavity [7]. Calculations of other quantities are in 
progress. 
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