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Phase transition:
Theory is well developed for infinite systems.
But, real systems are finite. Not sufficiently understood.

This talk: Breaking of the U(1) gauge symmetry in finite systems.

e 'inite — superselection rule

e Macroscopic (Thermodynamical) — stability

What is the vaccuum (or equilibrium) state that is compatible with the
superselection rule and the macroscopic stability?




Superselection rule — popular, but misleading versions
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Popular arguments

Bose-Einstein condensate (BEC) O Superconductor 0 O [

eI O0DDODDODDOOCO

—BEC: O(z) = ¢()

— Superconductor : O(z) = @T(x)zﬁ ()
e superselection rule U OO NUOODOOUOOOOOOOOOOO
e 000 (O(x)) =000 00 spontancous symmetry breaking 0 O O O
e [1 1[I 0 Long-range order J 0 O [

(OT(2)O(y)) 4 0 as |z — y| — oo spatially.

e Definite relative phase only when S and So are entangled.
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Questions about the popular arguments

e 77 superselection rulel 0 0O NUOODOOOODOODOOOOOO
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7?7 000 (O(x)) =00 00O O spontaneous symmetry breaking [0 00 O O
e 77 Definite relative phase only when S and S are entangled.
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Moreover,

000000000 O00DO0ODOmacroscopic (thermodynamical) sta-
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e Wrong points in the populer arguments.
e Then, what state is realized?
e Time evolution of |vac).

e Summary and conclusions.



Superselection rule (SSR) — a more precise description
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Definition of pure and mixed states

Let w(A) represent the expectation value of an observable A in a state w.

'Def. w is called mixed iff there exist w1 and wy (# wy) s.t.
WA =Awi(A)+ (1 =X w(d) <A< ]1)

for every observable A. Otherwise, w is called pure.

N

Note: The popular definition is
% = p: mixed, p2 = j : pure.
However, this is rather misleading:
e What observables are considered? (Are they gauge invariant? etc)
e What is the limit of V' — 007
e A mixed phase or mixed state in a pure phase?

e On what space p is defined?



An isolated quantum system that is subject to the SSR

e Look at S = 51+ 59, and regard
the rest as the environment E.

S e |size of E| > |size of S].

e One will not measure observ-

ables in E.

e So can be (a part of) an appara-
tus for measuring Sy.

Hilbert space : Hiot = H1 ® Hg QHg

Total charge : Niot = N1 + Ny +Np

N 0). = eigenfunction of N (k= 1,2, E)



We show ... AS and T Mivadera, cond-mat /0102429,

[ A
There exist eigenstates |®)or of Niot with the following properties:

(i) The density operator pg = Trg (|P)tot tot(P|) satisfies ,5% + pg.

But, pg is equivalent to a vector state |dq)gq (€ Hg) for any gauge-
invariant observables in S.

(i1) |$g)q is a product of vector states of Sy and So;
Bg)s = |20y,
where \q)(k)}k is superposition of states with different charges,
k
o) = 3 O N

N, £
— 51 and S9 are not entangled, but can have definite relative phase!

iii) To each subsystem S;., one can associate \q)(k))k and observables which
are not necessarily gauge invariant in each subsystem.

iv) In this association, |[®%)),. is a pure state.
N




Proof: a state with such properties

1) A2) AE
Dot =Y S:S:C](Vfglcg\;;@@(vﬁwg [N141) 1| Noblo)o| Ntot — N1 — No, £)g
N1,01Na, by €
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o C]<V1) 610](\?2)62 are non-vanishing only when Ny + No < Nyot.

States with low energies would satisfy this condition.
Theretfore,
o | D)ot is an eigenstate of Niot.
e For Ng = Ny + No,
Prob|Niot — Ng bosons in E| ~ independent of Ng
when [Ng — (Ng)| < 1/ (6N3).

Natural for a large environment.



Reduced density operator of S (=S{+S;)
For a state |®)tqt of the total system,

ps = Trg (12)tot tot(P])

— y: >: >: >: 5N1+N2, N{+NJ

N0y NJ 04 N1,y Nolo
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Except for the trivial case where ), |C NZ’Q = 5]\/’ (k) e find
Vo

(pg)* # pg  — ‘mixed state.’

But, (pg)° # pg only ensures that for any vector state |®)g (€ Hg) there
exists some operator =g (on Hg) for which

Trg ( psZs) # s(@[Zs[@)s

Such ég is not necessarily gauge-invariant, hence might not be an observable

of S.



Proof of (i) and (ii)
One will not measure anything of E.
—  One measures only observables which take the following form:

AS X iE
— This should be gauge-invariant, hence Ag is gauge-invariant.
—  Ng (= Ny + Ny) is conserved by the operation of Ag;

A N1l Nl
1(N101]2(Nala| Ag 101 Nols

! ol I ol
Nol5)o|N1y)1 = 5N1+N2,N{+N§AN{g/1Nég/2°

Hence, for any observable fls that will be measured,
(Ag) = Trg (ﬁsAs)
_ (1) ~(2) ~(2)x ~(1)x Nyl Noby
=2 2 2 2 et Ot Cnats Oy At i,
N{,0} NSO Nyt Nolo

= g(Pg|Ag|Ps)s;
where

D)s = [0 @)y, [0W) = 3 oW Ny, m
Ny, ¢




AS and T. Miyadera, cond-mat/0102429.

f A
There exist eigenstates |)ot of Niot with the following properties:

(i) The density operator pg = Trg (|P) 1ot tot(P|) satisfies ,6% + pg.

But, pg is equivalent to a vector state |dq)gq (€ Hg) for any gauge-
invariant observables in .

(ii) |®g)g is a product of vector states of S and So;
25)s = [@1)1]@1%),,
where |<I><k>>/~C is superposition of states with different charges,
L k
2®) = 3 OV N

N, ¢
— 51 and S9 are not entangled, but can have definite relative phase!

iii) To each subsystem S;., one can associate \q)(k))k and observables which
are not necessarily gauge invariant in each subsystem.

iv) In this association, |®(F)),. is a pure state.
N




Proof of (iii) and (iv)
Ag should be (a sum of) products of operators of each subsystems:

Ag = AyAy or Ay AL or Ay Al

Although AS Is gauge invariant, each Ak Is not necessarily gauge-invariant.

— For ‘Nk€k>k and ‘N ¢ >k> there exists Ak s.t. (Nl | Ak ‘N ¢ >/€ = ()

— |®*)y, is a pure state.
|



AS and T. Miyadera, cond-mat/0102429.
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There exist eigenstates |)ot of Niot with the following properties:

(i) The density operator pg = Trg (|P) 1ot tot(P|) satisfies ,6% + pg.

But, pg is equivalent to a vector state |dq)gq (€ Hg) for any gauge-
invariant observables in .

(ii) |®g)g is a product of vector states of S and So;
25)s = [@1)1]@1%),,
where |<I><k>>/~C is superposition of states with different charges,
L k
2®) = 3 OV N

N, ¢
— 51 and S9 are not entangled, but can have definite relative phase!

iii) To each subsystem S;., one can associate \q)(k))k and observables which
are not necessarily gauge invariant in each subsystem.

iv) In this association, |®(F)),. is a pure state.
N




So, we can play the game as ....

1. Decompose the system into S1, So and E:

e 5o can be an apparatus for measuring Sy.

e You don't look at E.
—  Observables in S (=51+52) should be gauge-invariant.

2. But, observables in Sy (or So) are not necessarily gauge invariant.

3. To Sy and S9, associate ]q)(l))l and |<I><2>>2, respectively, which are super-
positions of states with different charges.

4. Then,
o |®(); and |®2))y are pure states.
e The state of S is the product state, |Pg)g = |<I><1>>1|<I>(2>>2.

For each subsystem, non-gauge invariant observables and a pure state which
is a superposition of states with different charges.

Note: Decomposition into S; and So is insufficient. You need E!' «+ realistic



Wrong points in the popular arguments
e 00 ODODDODODODOOD
~BEC: O(z) = ¢()
— Superconductor : O(z) = ¥y(x)Y) ()

e [1 [0 U Long-range orderJ O 0 [
<(’>T(aj)(’>(y)> # 0 as |r — y| — oo spatially.

o Definiterelativephase-only-whensrand-Soare-entangled.

Sq J o sin (6] — 609)
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Then, what state is realized?



Analogy — transverse Ising model of finite size

H:—JZJZ Vo 7(x+ 1) hZaX

Order parameter: O = Z o7(x) (total magnetlzatlon).

For 0 < h < 3hc, the exact ground state is
G) = [T1T---)+ [ LIl ---) + small terms

= cat state + small terms
e Unique

e Has the Zy symmetry
— (O) =0 : symmtery is not broken.



But, macroscopically stable vacuum (or equilibrium) state |vac) should be
[ TTT--+) or | L]l --+) (ferromagnetic state)
e Degenerate
o (O) = O(V) : symmtery is broken.
e Fyae > b

One of symmetry-breaking states is realized, although they have higher en-
ergies than the exact ground state (which is symmetric).

Why?



Because the latter does not have macroscopic stability.

A simplified example (with the Zy symmetry):
G) =111y +[LLL-)

measurement of o(1) | unstable

vac) = | 117 ---)
measurement of (1) | stable
vac) = | 117 ---)

measurement of ox (1) |} stable, macroscopically
|single-spin excitation on vac) = | =TT ---)

-
Theorem (a simplified version): The symmteric ground state with a long-
range order is unstable against local measurement of O(x), i.e., does not
have macroscopic stability.

-

\

J

p
KEnergy is not sufficient to determine the vacuum; stability is important!

%




Where do you encounter Eyuzc > Eg?

This often occurs, in the absence of a symmetry-breaking field, when

AN

[H, O] 40 (O = order parameter).

e Antiferro magnet

O = Z(—l)gj o7(x) (staggered magnetization).

A Symmetry—breakixng field E(m) — (=1)*h is highly artificial.
e U(1) gauge symmetry breaking

~BEC: O = [ ¢(z)dx

— Superconductor : O = [ zﬁT(a?)zz |(z)dz

c.f. For simple ferromagnets, ¢ = Ey,c because
(H, O] =0for O = Z&Z(x).
X

A symmetry-breaking field fz(:z:) —h 7 18 natural.



Eyac — Eg for U (1) gauge symmetry breaking systems
(for equal (IV), a unifrom system of large V', with PBC)

ground state : lﬁ]|G> = Fq|G), N|G> = N|G).
vacuuml : Eyge = (H), (N)=N, O0N?=((AN)?) 0.
Thermodynamics requires
FEyac — Eq = o(V) or, more strongly, Fyqc — Eq = O(1)?
cf. For breaking of Zo symmetry
Evae — Eq < O(1/V).

For short-range interactions

Efvac_EGZ,u/QV + v U =

When N4 = O(<N>) = O(V),

SN?  o(V) e
on

Eyae — E > a positive constant of O(1).



How was such a strict inequality derived?
Fully quantum mechanical derivation is hard; the best result is
Evac — Eq <O(VV) — 00 when 6N? = O(V),
for a specific model.

Our inequality is more strict and universal;

ON? oV
Eyae — B > ,U/QV - (V>

— a positive constant of O(1) when §N? = O(V).
We have utilized quantum mechanics and thermodynamics:

quantum mechanics : H|N, () = En g|N,£), N|N,¢) = N|N, ¢,
G) =N, G),  |vac) =} CwyIN,0)

N/
thermodyn. extensivity : En g =V [e(N/V)+o(V)] (S — 0),
32
thermodyn. stability : 1/(n) = ¢’(n) = VWEMG =0(1) > 0,

Such powers of thermodynammics are stressed in 0000000000 OCOO0O0O)



Instability of |G) = |N, G)
This is the symmteric ground state with a long-range order.

|l above-mentioned theorem

Does not have macroscopic stability. A
Unstable against local measurement of O(x) = ¢(x).

Sy J o sin (0 — 69)

interference pattern



What state is realized as a vaccum?

4 ™
Theorem :

A state with the cluster property is stable against any local measurement,
i.e., has macroscopic stability.

N

%

So, the conditions for the vacuum state are summarized as;
.

1. Energy is low enough:
FEyac — Eq = o(V) or, more strongly, Fyqc — Eq = O(1)7
2. Macroscopic stability (i.e., cluster property).

\ 3. Compatibe with other physical situations of each system.

c.f. Nucleus

Large energy barrier against removing a particle
— ground state with fixed N; BCS state is a useful convention



A candidates for a vacuum state for short-range interactions

‘Coherent state of interacting bosons’

2 e CVN
@,G) = ey ZIN.G) - (Jaf? = (V)
N=0 '

e Symmery is broken: (¢(z)) = \/5% =0 (\/W) = 0(1).
(Z =0(1),0 < Z < 1 for interacting bosons)

e Cluster property

¢ IN?=(N)=0(V) — E,q—Eqg=0(1).

e Stable against leakage of particles

Therefore .....



When particles can flow between subsystems, <« realistic
the coherent state of interacting bosons <« |a,G)
would be realized in each of S| and So

o [size of E] > |size of §].

S e One will not measure observ-

ables in E.

e So can be (a part of) an appara-
K tus for measuring Sq.

[Pg)g = |1, G)1]ao, G)2

Q
! at equilibirum. If not, finite current.

VW \/_

e Similar results when S =51 +59 + 53+ - -

(O(z)) # 00 coherent stated 0 0 O O O O O O coherent state of interact-
ing bosonsU OO OOOOMOO OO OO




Superconductors — long-range interactions

If we regard a Cooper pair as a boson, a trivial extension of the short-range
case gives
JON? IN?  o(V)

Thermodynamics requires
Evac — EG — O(V) Of, Imore SthHgl}@ EUCLC — EG — O(l)?
Therefore, for large V.

e |a, G) would not be realized in superconductors, because SN? = O(V).

o States with N2 < O(V1/?) would be realized.
e But, |V, G) is macroscopically unstable (for large V).

Then, what state is realized?



A candidates for a vacuum state for long-range interactions

‘Number-phase squeezed state of interacting bosons’

N C*(N—M)

vt V(N — M)!IM!

[NV, ¢, G) = constant x M,G) (N =[] = (N))

If we take |¢]2 = O(V1/3) (= oo as V — o), then

\/_\f N/V O(1).

(Z =0(1),0 < Z < 1 for interacting bosons)

e Symmery is broken: ‘

e (Probably) Cluster property.
o IN* = (]
e For superconductors, Ey - g — Eg = O(1).

Therefore ...



When particles can flow between subsystems, <« realistic
the number-phase squeezed state of interacting bosons
would be realized in each of S| and So

o [size of E] > |size of §].

S1 e One will not measure observ-

ables in E.

e Sy can be (a part of) an appara-
I tus for measuring Sq.

[Dg)s = |N1, (1, G)11N2, G2, G)o
Similar results when S =Sy +S9 + S+ - -.

(O(z)) # 00 coherent stated 0O 0 0 O O O O O number-phase squeezed
state of interacting bosonsU O 0O O O 0O 0O O O OO 0O O




Different states are realized under different conditions

e Small superconductor
Large energy barrier against changing N

— ground state with a fixed N is stable and realized

® ctc.



So far, so good .... but ....!!!
In inifinite systems, a vacuum is assumed to be time-independent.

In finite systems,

o |N,G) : eigenstate of H — no time evalution if perturbation is absent.

But, discarded because macroscopically unstable.

e |, G) : would be realized because macroscopically stable.

But, not eigenstate of H — time evolution even if perturbation is absent!

a N
How can |a;, G) be consistent with

e a vacuum of infinite systems?”

| ° thermodynamics, where the equilibrium state is time-independent?
/




Although ¢}, would be finite for finite V', it is sufficient that
teps — 00 as V' — o0

However, a naive calculation gives:

O N
A2 (@7
a, G) = e 101/2 % jﬁw,@ = SN = (N)
N=0 '

ON)?
EnisnGg — Eng=noN + M/( 2\/)
1/u6N = 1/O(N) — 0777

However, the factor ©o/N can be absorbed into

= tclps
a — ae M = Josephson effect
[f interaction were absent, this solves the problem (well known).

However, 1/ > 0 because of interactions, so

(L~ VW (GN ) = O(VIN) = O(1).

The wavefunction collapses in such a short time!!



However, this does not necessarily mean that expectation values of observables
of interest alter in this time scale.

For an observable that is proportional to a field operator,

t%, ~ V/(1/N) = O(VV) — oo,

For an observable that is a polynomial of degree M of field operators,

i = OVV/M).

clps

/Therefore, it M is independent of V.

ts = O(VV) — oo

N J
Consistent with

e a vacuum of infinite systems.

e thermodynamics, where the equilibrium state is time-independent.




Summary and Conclusions

e By considering the environment, we can associate a pure state and non-
cgauge invariant observables to each subsystem.

e A vacuum state of a finite system is not necessarily the ground state.
e The conditions for the vacuum state are
1. Energy is low enough:
FEvae — Eq = o(V) or, more strongly, Fyqe — Eq = O(1)7
2. Macroscopic stability (i.e., cluster property).
3. Compatibe with other physical situations of each system.

e Candidates for the realized vacua, for short-range interactions and for long-
range interactions.

e When |vac) # |G), the state vector |vac) evolves quickly.

e However, if we look only at observables that are low-order polynomials of
field operators, their expactation values evolve slowly enough.



