Ch．grand canonical $T P Q(g T P Q)$ state $|\beta, \mu\rangle=\sum_{\nu} z_{\nu} e^{-\beta(\hat{H}-\mu \hat{N}) / 2}|\nu\rangle$ $\langle A\rangle_{\beta, \mu}^{T P Q} \xrightarrow{\underline{P}}\langle A\rangle_{\beta, \mu}^{\text {en }}$
$\langle\beta, \mu \mid \beta, \mu\rangle \xrightarrow{P} I(p, \mu):$ grand pratition $\}^{\text {epponatatial }}$ fout，
$N<+\infty$ で，$N \rightarrow \infty$ に最も近い紹果をちそるのは，

ch．「熱わらぎ」とは？

$\frac{1}{2} e^{-\beta H} 1=お M 2,\left\langle(M-\langle M\rangle)^{2}\right\rangle=\left\langle(M)^{2}\right\rangle \neq 0$

だろう。
ここでは，量子系の（ア） にしま゙る！

S．Sugiura and $A 5$ ，Kinki Unv．Series on Quantum Computing 9,245 （2014） arkiv：B12．5145

Gibbs state $E(\neq) \backsim \hbar, ふ つ う の \neq 10 D$
$\hat{\rho}=\frac{1}{2} e^{-\beta \hat{H}}=\frac{1}{2} \sum_{n} e^{-\beta \bar{n} n}|n\rangle\langle n|$
$\hat{\rho}=\sum_{\lambda} w_{\lambda}(\lambda) \quad\left(\sum_{\lambda} w_{\lambda}=1,2 \sqrt{\lambda}_{\lambda} \geq 0\right)$
$\left(\begin{array}{l}\text { から，} \\ \Gamma \hat{\rho} \text { にあ } 1+3 Q F \equiv\left\langle(A)^{2}\right)^{2 \pi N} q\end{array}\right.$
$\equiv \sum_{\lambda} w_{\lambda}\left\langle\lambda\left((\hat{A}-\langle\lambda| \hat{A}|\lambda\rangle)^{2}|\lambda\rangle\right.\right.$
のとき，
$\left.\langle\lambda|(\hat{A}-(\lambda|\hat{A}| \lambda\rangle)^{2} \mid \lambda\right): \begin{aligned} & |\lambda\rangle \mid \text {（2at } 1+3 \\ & \hat{A} の \text { quantux } \\ & \text { flation }\end{aligned}$
flumeration（ar）．

$\hat{\rho}=|\psi(\beta)\rangle\langle\psi(\beta)|$
$\Delta \eta_{1}\left((\Delta A)^{2}\right)_{a}^{T P}=\left\langle(A)^{2}\right)^{T P Q}=\left\langle(\Delta A)^{2}\right)^{\ln R}$

$$
\left\langle(A A)^{2}\right)_{t^{T P D}}^{T h}=0
$$

\therefore TPQ 形式では，（ア）のイミの「㘼わらぎ」も「量子ゆるぞ」 に合まれている！
実は，$\left\langle(\Delta A)^{2}\right)_{\text {Gnd }}^{\text {end }}$ \＆$\left\langle(\Delta A)^{2}\right)_{\text {－h }}^{\text {ens }}$ を が沉測ることはできたい！

䓌わすのはの種鈢ある！
（＊$\langle\lambda \mid \lambda\rangle \neq 0$ でもよい！）
ex $\hat{\rho}=\frac{2}{3}|\uparrow\rangle\langle\uparrow|+\frac{1}{3}|\downarrow\rangle(\|)$
$(\rightarrow-x) \geq \frac{1}{2}|+\lambda\rangle\left(\left.t+\frac{1}{2} \right\rvert\,-\right)(-1$ $2\left(| \pm\rangle \equiv \sqrt{\frac{2}{3}}(\eta) \pm \sqrt{\frac{1}{3}}|\nu\rangle\right)$

$$
\left.=\sum_{\lambda} w_{\lambda} \mid \lambda\right)\left(\lambda \mid \rightarrow\left((A A)^{2}\right)^{\infty}>0\right.
$$

$$
-\lambda\left\langle(\Delta \hat{i})^{a}\right)^{0 \pi N} t \text {. }
$$

$\hat{\rho}$ ens $\subset|\beta\rangle$ は，${ }^{\forall} \hat{A}$ ：mechanical variables
烡存る！
ex，Heisenborg chain．$($ intemation $=J)$

$$
\begin{aligned}
& \text { reduad desisit op. } \\
& \hat{\rho}_{\sigma} \equiv \operatorname{F}_{\alpha-q}(|\beta\rangle\langle\beta|) \\
& +S_{V_{A}}=-\pi(\rho \ln \hat{\rho} \hat{\rho})
\end{aligned}
$$

> Bl心eq. State 12フnて, entanglat on? min. frolbstue. $\max +T P Q$ sote

Fig. 1 A schematic picture of our setup. The second Rényi Page curve for pure states, $S_{2}(\ell)$, follows the volume law when ℓ is small, but gradually deviates from it as ℓ grows. At the middle, $\ell=L / 2$, the maximal value is obtained, where the deviation from the volume law is $\ln 2$ (see the Results section). Past the middle $\ell=L / 2$, it decreases toward $\ell=L$ and becomes symmetric under $\ell \leftrightarrow L-\ell \quad \begin{aligned} & \text { Nakagawa, Watanabe, Fuijta, Sugiura, } \\ & \text { Nature Comm. } 1635 \text { (2018). }\end{aligned}$

Fig. 2 Second Rényi Page curve in cTPQ states. The dots represent the second Rényi Page curves in the cTPQ states of the spin system (9) at an inverse temperature $\beta=4$ calculated by Eq. (3) for various system sizes L. The lines are the fits by Eq. (5) for the numerical data. The inset shows the fitted values of $\ln a, S_{2}(L / 2) /(L / 2)$, and the average slope of the curve between $\ell=1$ and $\ell=5$. The dotted lines are the extrapolations to $L \rightarrow \infty$ by $1 / L$ scaling for $\ln a$ and $S_{2}(L / 2) /(L / 2)$ and by $1 / L^{2}$ scaling for the average slope Nakagawa, Watanabe, Fujita, Sugiura, Nature Comm. 1635 (2018).
 \＆TPQ formation

紋さでば localopeの低尔多項式
少数自蟅 \rightarrow どっちも実现できる！
－entanglement 12 つurt，これとほとんど周じ結果をちえる
Ref．Natagava et al，Nature Comemn． 1635 （2018）

Fig. 3 Second Rényi Page curve for general energy eigenstates. a 2RPCs of several energy eigenstates of the non-integrable Hamiltonian, Eq. (9) with $\Delta=2$ and $J_{2}=4$ (dots), and the fits by our formula (5) (lines). The inset shows the energy spectrum of the Hamiltonian, and the arrows indicate the eigenstates presented in the figure. \mathbf{b} Same as figure \mathbf{a} for the integrable Hamiltonian $\left(\Delta=2, J_{2}=0\right)$. \mathbf{c} Residuals of fits per site $r_{i} \equiv L^{-1} \sum_{\ell=0}^{L}\left(S_{2}(\ell)_{i, \text { data }}-S_{2}(\ell)_{i, \text { fit }}\right)^{2}$, where $S_{2}(\ell)_{i, \text { data }}$ is the 2REE of the i-th eigenstate and $S_{2}(\ell)_{i, \text { fit }}$ is a fitted value of it, for all eigenstates of the non-integrable Hamiltonian (10) with $\Delta=2$ and $J_{2}=4$ (we consider only the sector of a vanishing total momentum and magnetization). The eigenstates are sorted in descending order in terms of the residuals, and the horizontal axis represents their percentiles. The fits become better as the size of the system increases. \mathbf{d} Same as figure \mathbf{c} for the integrable Hamiltonian $\left(\Delta=2, J_{2}=0\right)$. The fits become worse as the size of the system increases Nakagawa, Watanabe, Fujita, Sugiura, Nature Comm. 1635 (2018)

Ch。時肉発辰
$\oint T P Q ~ S t$ tetes without $夕 卜 1+{ }^{\text {易 }}$
同じe8．S C \＆せ を素わす。異なる realizationのTPQ statesのifot $へ ぬ く ゙ る, ~$

$$
\begin{aligned}
& \hat{U}_{\sigma \rightarrow M 1}(t) \equiv e^{-i\left(\hat{H}+\hat{H}_{\text {Pt }}\right) t / \hbar} \quad(t \geq 0) \\
& |\psi(\beta\rangle\rangle \longrightarrow \hat{U}(t)|\psi(\beta)\rangle \\
& \text { 爵味があるの1た, } \\
& \Delta A(t)=\langle\psi(\rho)| \hat{\hat{U}^{+}(t) \hat{A} \hat{U}(t) \mid \psi(\beta)}-\langle\psi(\beta)| \hat{A}|\psi(\beta)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& D_{\hat{A}(t)}^{2}=\overline{\left(\langle\hat{A}(t)\rangle_{\beta}^{T P Q}\langle\hat{A}(t))_{\beta}^{\text {ens }}\right)^{2}} \\
& \leq \frac{\left\langle(\Delta \hat{A}(t))^{2}\right\rangle_{2 \beta}^{\text {ens }}+\left(\langle\hat{A}(t)\rangle_{2 \beta}^{\text {end }}-\langle\hat{A}(t))_{\beta}^{\ln A}\right)^{2}}{\left[\operatorname { e x p } \left\{F(t(2)-T(t)\}^{2}\right.\right.} \\
& \exp [2 \beta\{F(T / 2)-F(T)\}] \\
& =\frac{\text { Poly }(N)}{} \text { TDLs } 0 \therefore \begin{array}{c}
\text { mechanical variables on }
\end{array} \\
& =\frac{\exp [(\Theta)(N)]}{} 0 \quad \therefore \begin{array}{c}
\text { nonerg evodution } t \text {. }
\end{array} \\
& \text {-stay として } \\
& \text { 何がうれしいが? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C"xt. Schrodinger pictiveでゃうら! }
\end{aligned}
$$

Linear and nonlinear susceptibility.-The LR and NLR need to be discussed separately. When h is small enough, the response extrapolates to that obtained from the LR theory [1-4]. In this LR regime, the linear susceptibility (or admittance) $\chi(\omega)$, which is the Fourier transform of the LR function [1-4], does not depend on the profile of \boldsymbol{h} along the time axis. Therefore, it is sufficient to consider the specific time dependent profile Eq. (2), to obtain the general form of $\chi(\omega)$ as a function of frequency ω. Assuming that \hat{A} is an additive observable, we obtain the following formula:

$$
\begin{equation*}
\chi(\omega)=\frac{\Delta A(+\infty)}{N h}-i \omega \int_{0}^{\infty} \frac{\Delta^{\prime} A(t)}{N h} e^{i \omega t} d t \tag{5}
\end{equation*}
$$

where $\Delta^{\prime} A(t):=\langle\hat{A}(t)\rangle_{\beta, N}-\langle\hat{A}(+\infty)\rangle_{\beta, N}$. According to Kubo [1], $\chi(\omega)$ is explicitly given by the retarded Green function at equilibrium, which contains the information on the elementary excitations, whose nature could thus be examined by evaluating $\langle\hat{A}(t)\rangle_{\beta, N}$ for sufficiently small h. One can further specify the wave number \boldsymbol{q} in \boldsymbol{h}, in order to obtain the \boldsymbol{q}-dependent susceptibility $\chi(\boldsymbol{q}, \omega)$. These points will be illustrated shortly.

At larger h, the correspondence with the LR theory breaks down. Still, we use Eq. (5) as the definition of the nonlinear susceptibility $\chi(\boldsymbol{q}, \omega ; h)$ with explicit h dependence, because it is well defined even in this NLR regime and is continuously connected to the linear one.

Here, we do not follow the conventional perturbative definition in nonlinear optics [5]. Our $\chi(\boldsymbol{q}, \omega ; h)$ could treat nonperturbative effects such as the nonlinear band deformation, as we see shortly.

$$
\begin{aligned}
& \langle A\rangle_{t}^{f}-\langle A\rangle_{e q}^{f=0}=: \text {. 论㪉 } Q \Delta A(t) \\
& =\int_{-\infty}^{t} \Phi \underbrace{t-t^{\prime}}_{\text {respone }}) f\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{\infty} \underbrace{\Phi(\tau)}_{\Delta} f(t-\tau) d \tau
\end{aligned}
$$

admittancelt．

$$
\chi(\omega)=\int_{-\infty}^{\infty} \Phi(\tau) e^{i \omega \tau} d \tau
$$

特反。

$$
f(t)=f(t)(t)
$$

のときは，

$$
\begin{aligned}
& \langle A\rangle_{t}^{f}-\langle A\rangle_{e q}^{f=0} \\
& =f \int_{0}^{t} \Phi \underbrace{\left(t-t^{\prime}\right)}_{=t} d t^{\prime}=f \int_{0}^{t} \Phi(\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
& \langle A\rangle_{\infty}^{f}-\langle A\rangle_{e}^{f}=0 \\
& =f \int_{0}^{\infty} \Phi(\tau) d \tau
\end{aligned}
$$

边々引き筧して，

$$
\begin{aligned}
& \langle A\rangle_{t}^{f}-\langle A\rangle_{\infty}^{f}=: \Delta^{\prime} A(t) \\
& =-f \int_{t}^{\infty} \Phi^{\prime}(\tau) d \tau=\Delta A(f)- \\
& \quad+\langle A)_{e q}^{f=0}-\langle A\rangle_{\infty}^{f}
\end{aligned}
$$

两丑をビッグソる：

$$
\begin{aligned}
& \frac{d}{d t} \Delta^{\prime} A(t)=f-\Phi(t) \\
& \text { 両泣を }\left[0,(\omega) \tau^{n} F T \hbar z:\right. \\
& \int_{0}^{\infty} e^{i \omega t} \frac{d}{d t} \Delta^{\prime} A(t)=f X(\omega) \\
& =\left[e^{i \omega t} \Delta^{\prime} A(t)\right]_{0}^{\infty}-i \omega \int_{0}^{\infty} e^{i \omega t} \Delta^{\prime} A(t) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\Delta^{\prime} A(\infty)-\Delta^{\prime} A(0)-i \omega \int_{0}^{\infty} e^{i \omega t} \Delta^{\prime} A(t) d t}_{=0} \\
& =\langle A\rangle_{\infty}^{f}-\langle A\rangle_{0}^{f}-i \omega \int_{0}^{\infty} e^{i \omega t} \Delta^{\prime} A^{\prime}(t) d t \\
& \quad=\langle A\rangle_{\text {eq }}^{f} \\
& =\Delta A(\infty)-i \omega \int_{0}^{\infty} e^{i \omega t} \Delta^{\prime} A(t) d t
\end{aligned}
$$

㤢元に，

$$
X(\omega)=\frac{1}{f}\left[\Delta A(\alpha)-\lambda \omega \int_{0}^{\infty} e^{i \omega t} \Delta^{\prime} A(t) d t\right]
$$

$$
\Delta^{\prime} A(f) \rightarrow\langle A\rangle_{\infty}^{f}-\langle A\rangle_{\infty}^{f}=0
$$

となるoru，reasonable な公式！
をか？収事因子を入れてもよい（とゝ＋0）：

$$
X(\omega)=\frac{1}{f}\left[\Delta A\left((\alpha)-i \omega \int_{e}^{\infty} e^{\lambda \omega t-\varepsilon t} \Delta^{\prime} A(t) d t\right]\right.
$$

Heisenberg chain

FIG. S2. Supporting results of the spin- $1 / 2$ kagome antiferromagnet at $N=27$. (a) Time evolution of $\left\langle M_{q}(t)\right\rangle$ that yields the nonlinear response (Fig. 3(b)) at $h=0.5$ and $k_{B} T=0.1$. The solid lines give the results starting from different TPQ states, and the broken lines are their averages. (b) Comparison of $\chi(q, \omega ; h)$ between $h=0.02$ and 0.05 at $k_{B} T=0.1$. The latter is the same as given in Fig. 3(a). A somewhat oscillating deviation of $h=0.02$ at small ω dissolves when taking an average of many samples (while here, we take three sample averages for all data in this figure). (c) Comparison of $\chi(q, \omega ; h)$ at $h=0.5$ between $N=27$ and 18. The spikes found in $N=18$ data is due to the small system size which is smoothed out already at $N=27$.
kagome antiferromagnet
Endo, Hotta, Shimizu, Phys. Rev. Lett. 121, 220601 (2018), supplemental material

kagome antiferromagnet $\omega / 2 \pi \quad$ Endo, Hotata, Shimizu, Phys. Rev, Lett. 212, 200001 (2018) $\omega / 2 \pi$

